Skip to main content
Log in

An Analysis of the \(B^{3}\Pi _{2} - X^{3}\Delta _{2}\) (0, 0) Band System of the TiO Molecule in Laboratory and Sunspot Spectra

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The \(B^{3}\Pi _{2} - X^{3}\Delta _{2}\) (0, 0) band system of the titanium monoxide (TiO) molecule was excited in a DC copper arc with a constant deviation spectrometer. The resulting spectrum has been analyzed using image J software. Relative intensity measurements of the P- and R-branch molecular lines of the (0, 0) band with rotational quantum (\(J\)) numbering have been obtained. The measured intensity of rotational molecular lines and the \(J\) numbering were used to estimate the excitation rotational temperature of the source emitting the spectrum of TiO molecules. Also the presence of TiO spectral lines of the \(B^{3}\Pi _{2} - X^{3}\Delta _{2}\) (0, 0) band in the wavenumber region of 14 500 to 16 000 cm−1 has been confirmed in the umbral spectrum, from the atlases recorded at the National Solar Observatory using the Fourier transform spectrometer (FTS) of the McMath-Pierce Solar Telescope on Kitt Peak. The combined laboratory and sunspot spectral line measurements have been used to obtain the improved molecular structure parameters for the electronic states \(B^{3}\Pi _{2}\) and \(X^{3}\Delta _{2}\) of the TiO molecule. Using equivalent width measurements of well resolved and identified lines in the sunspot spectrum with known rotational quantum number, the effective rotational temperature was found to be \(2555 \pm 780\) K. This proves the presence of TiO molecules in sunspot and other higher temperature astrophysical sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amiot, C., Azaroual, E.M., Luc, P., Vetter, R.: 1995, High resolution rotational analysis of the \(B^{3}\Pi -X ^{3}\Delta \) (1, 0) band of titanium monoxide. J. Chem. Phys. 102, 4375. DOI.

    Article  ADS  Google Scholar 

  • Barnbaum, C., Omont, A., Morris, M.: 1996, The unusual circumstellar environment of the evolved star, U Equulei. Astron. Astrophys. 310, 259. ADS.

    ADS  Google Scholar 

  • Bauschlicher, C.W., Ram, R.S., Bernath, P.F., Parsons, C.G., Galehouse, D.: 2001, The \(A ^{6}\Sigma ^{+}-X ^{6}\Sigma ^{+}\) transition of CrH, Einstein coefficients, and an improved description of the A state. J. Chem. Phys. 115(3), 1312. DOI.

    Article  ADS  Google Scholar 

  • Bruggeman, P.J., Sadeghi, N., Schram, D.C., Lins, V.: 2014, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Sci. Technol. 23(2), 023001. DOI.

    Article  ADS  Google Scholar 

  • Engvold, O.: 1973, A high dispersion spectrum 6610 Å to 6770 Å of a large sunspot. Astron. Astrophys. Suppl. 10, 11. ADS.

    ADS  Google Scholar 

  • Fawzy, D.: 2009, The rotational temperature of the FeH molecules in a large sunspot. New Astron. 14, 708. DOI.

    Article  ADS  Google Scholar 

  • Fletcher, D.A., Scurlock, C.T., Jung, K.Y., Steimle, T.C.: 1993, Hyperfine interactions in the ground states of titanium monoxide and mononitride. J. Chem. Phys. 99, 4288. DOI.

    Article  ADS  Google Scholar 

  • Hartmann, J.: 1898, A simple interpolation formula for the prismatic spectrum. Astrophys. J. 8, 218. DOI.

    Article  ADS  Google Scholar 

  • Herzberg, G.: 1950, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, Van Nostrand, Toronto. ISBN: 9781443726085, 1443726087.

    Google Scholar 

  • Huber, K.P., Herzberg, G.: 1979, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand/Reinhold Company, New York. ISBN: 0-442-23394-9.

    Book  Google Scholar 

  • Kirkpatrick, J.D., Henry, T.J., McCarthy, D.W.: 1991, A standard stellar spectral sequence in the red/near-infrared: classes K5 to M9. Astrophys. J. Suppl. 77, 417. DOI.

    Article  ADS  Google Scholar 

  • Konwar, M., Brauah, G.D.: 2010, Special issue. Asian J. Spectrosc. 153. http://imagej.nih.gov/ij.

  • Lambert, D.L., Mallia, E.A.: 1972, The (0, 0) band of the gamma-system of TiO in the umbral spectrum: the isotopic abundances of Ti. Mon. Not. Roy. Astron. Soc. 156, 337. DOI.

    Article  ADS  Google Scholar 

  • Makita, M.: 1968, A study of the green TiO band in the sunspot spectrum. Solar Phys. 3, 557. DOI.

    Article  ADS  Google Scholar 

  • McKemmish, L.K., Masseron, T., Sheppard, S., Sandeman, E., Schofield, Z., Furtenbacher, T., Császár, A.G., Tennyson, J., Sousa-Silva, C.: 2017, Marvel analysis of the measured high-resolution rovibronic spectra of TiO. Astrophys. J. Suppl. Ser. 228, 15. https:/doi.org/10.3847/1538-4365/228/2/15.

    Article  ADS  Google Scholar 

  • Mulchaey, J.S.: 1989, The rotational temperature of the FeH molecule in a sunspot. Publ. Astron. Soc. Pac. 101, 211. DOI.

    Article  ADS  Google Scholar 

  • Phillips, J.G.: 1973, Molecular constants of the TiO molecule. Astrophys J Supp. Series 26, 313. DOI.

    Article  ADS  Google Scholar 

  • Ram, R.S., Bernath, P.F., Wallace, L.: 1996, Near-infrared spectroscopy of TiO: laboratory measurements and identification in sunspots. Astrophys. J. Suppl. Ser. 107, 443. DOI.

    Article  ADS  Google Scholar 

  • Ram, R.S., Bernath, P.F., Dulick, M., Wallace, L.: 1999, The \(A ^{3}\Phi-x ^{3}\Delta \) system (\(\gamma \) bands) of TiO: laboratory and sunspot measurements. Astrophys. J. Suppl. Ser. 122, 331. DOI.

    Article  ADS  Google Scholar 

  • Richardson, R.S.: 1931, An investigation of molecular spectra in sun-spots. Astrophys. J. 73, 216. DOI.

    Article  ADS  Google Scholar 

  • Sotirövski, P.: 1971, The molecular spectrum of sunspot umbrae. Astron. Astrophys. 14, 319. ADS.

    ADS  Google Scholar 

  • Sotirövski, P.: 1972, Table of solar diatomic molecular lines spectral range 4900 - 6441 Å. Astron. Astrophys. Suppl. Ser. 6, 85. ADS.

    ADS  Google Scholar 

  • Sriramachandran, P., Shanmugavel, R.: 2011, On the effective temperature of large sunspot umbra using CrH sextets electronic state molecular lines. Astrophys. Space Sci. 336, 379. DOI.

    Article  ADS  Google Scholar 

  • Sriramachandran, P., Shanmugavel, R.: 2013, Occurrence of AlO molecular lines in sunspot umbral spectra. Solar Phys. 286, 315. DOI.

    Article  ADS  Google Scholar 

  • Sriramachandran, P., Rajamanickam, N., Bagare, S.P., Balachandrakumar, K.: 2008, Presence of LaO, ScO and VO molecular lines in sunspot umbral spectra. Solar Phys. 252, 267. DOI.

    Article  ADS  Google Scholar 

  • Tylenda, R., Cravse, L.A., Gomy, S.K., Schmidt, M.R.: 2005, V4332 Sagittarii revisited. Astron. Astrophys. 439(2), 651. DOI.

    Article  ADS  Google Scholar 

  • Valenti, J.A., Piskunov, N., Johns-Krull, C.M.: 1998, Spectral synthesis of TiO lines. Astrophys. J. 498, 851. DOI.

    Article  ADS  Google Scholar 

  • Viswanathan, B., Shanmugavel, R., Bagare, S.P., Rajamanickam, N., Sriramachandran, P.: 2009, Identification of CrH and CrD molecular lines in the sunspot umbral spectrum. Solar Phys. 257, 261. DOI.

    Article  ADS  Google Scholar 

  • Wallace, L., Hinkle, K., Livingston, W.C.: 2000, An atlas of sunspot umbral spectra in the visible from 15,000 to 25,000 cm−1 (3920 to 6664 Å). Tec. Rep. 00-001, NSO, Tucson.

  • Wallace, L., Livingston, W.C., Bernath, P.F., Ram, R.S.: 1998, An atlas of the sunspot umbral spectrum in the red and infrared from 8900 to 15 050. cm−1 (6642 to 11230 Å). Tech. Rep. 98-001. NSO, Tucson.

  • Weber, J.C.: 1971, The molecular spectrum of sunspots. Solar Phys. 16, 340. DOI.

    Article  ADS  Google Scholar 

  • Wöhl, H.: 1971, On molecules in sunspots. Solar Phys. 16, 362. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express deep gratitude to their mentors and Prof. S. P. Bagare, Indian Institute of Astrophysics, Bangalore, and Dr. N. Rajamanickam, Former Head, Physics Research Centre, VHNSN College, Virudhunagar. The solar atlases used in this study are taken from the technical reports of the National Solar Observatory web site, operated by the Association of Universities in Astronomy, Inc. (AURA), under a cooperative agreement with the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sriramachandran.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriramachandran, P., Priyadharshini, D., Ashraf Shiddeeqaa, N. et al. An Analysis of the \(B^{3}\Pi _{2} - X^{3}\Delta _{2}\) (0, 0) Band System of the TiO Molecule in Laboratory and Sunspot Spectra. Sol Phys 295, 169 (2020). https://doi.org/10.1007/s11207-020-01737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01737-6

Keywords

Navigation