Skip to main content
Log in

On the Visibility of Prominence Fine Structures at Radio Millimeter Wavelengths

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Prominence temperatures have so far mainly been determined by analyzing spectral line shapes, which is difficult when the spectral lines are optically thick. The radio spectra in the millimeter range offer a unique possibility to measure the kinetic temperature. However, studies in the past used data with insufficient spatial resolution to resolve the prominence fine structures. The aim of this article is to predict the visibility of prominence fine structures in the submillimeter/millimeter (SMM) domain, to estimate their brightness temperatures at various wavelengths, and to demonstrate the feasibility and usefulness of future high-resolution radio observations of solar prominences with ALMA (Atacama Large Millimeter-submillimeter Array). Our novel approach is the conversion of H\(\upalpha\) coronagraphic images into microwave spectral images. We show that the spatial variations of the prominence brightness both in the H\(\upalpha\) line and in the SMM domain predominantly depend on the line-of-sight emission measure of the cool plasma, which we derive from the integrated intensities of the observed H\(\upalpha\) line. This relation also offers a new possibility to determine the SMM optical thickness from simultaneous H\(\upalpha\) observations with high resolution. We also describe how we determine the prominence kinetic temperature from SMM spectral images. Finally, we apply the ALMA image-processing software Common Astronomy Software Applications (CASA) to our simulated images to assess what ALMA would detect at a resolution level that is similar to the coronagraphic H\(\upalpha\) images used in this study. Our results can thus help in preparations of first ALMA prominence observations in the frame of science and technical verification tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. http://hinode.nao.ac.jp/news/OldNews2007/071207PressRelease/okamotos1_yellow.mpg .

  2. See http://casaguides.nrao.edu/index.php?title=Antenna_List .

  3. (ALMA Observing Tool, see http://almascience.eso.org/call-for-proposals/observing-tool ; the stand-alone Java-based web interface to the sensitivity calculator also exist at http://almascience.eso.org/call-for-proposals/sensitivity-calculator .)

  4. See CASA cookbook, http://casa.nrao.edu/docs/userman/UserMan.html .

References

  • Asayama, S., Whyborn, N., Yagoubov, P.: 2012, In: Holland, W.S. (ed.) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Proc. SPIE 8452, 84522Z.

    Chapter  Google Scholar 

  • Bastian, T.S., Ewell, M.W., Zirin, H.: 1993, Astrophys. J. 418, 510.

    Article  ADS  Google Scholar 

  • Benz, A.O.: 1993, Plasma Astrophysics, Kluwer Academic, Dordrecht, 263.

    Book  Google Scholar 

  • Berger, T.E., Shine, R.A., Slater, G.L., Tarbell, T.D., Title, A.M., Okamoto, T.J., et al.: 2008, Astrophys. J. 676, 89.

    Article  ADS  Google Scholar 

  • David, K.: 1961, Z. Astrophys. 53, 37.

    ADS  Google Scholar 

  • Dulk, G.A.: 1985, Annu. Rev. Astron. Astrophys. 23, 169.

    Article  ADS  Google Scholar 

  • Engvold, O., Hirayama, T., Leroy, J.-L., Priest, E.R., Tandberg-Hanssen, E.: 1990, In: Ruzdjak, V., Tandberg-Hanssen, E. (eds.) Dynamics of Quiescent Prominences, Lecture Notes in Physics 363, Springer, Berlin 294.

    Chapter  Google Scholar 

  • Gopalswamy, N., Hanaoka, Y., Lemen, J.R.: 1998, In: Webb, D.F., Schmieder, B., Rust, D.M. (eds.) New Perspectives on Solar Prominences, ASP Conf. Ser. 150, 358.

    Google Scholar 

  • Gouttebroze, P.: 2007, Astron. Astrophys. 465, 1041.

    Article  ADS  Google Scholar 

  • Gouttebroze, P., Heinzel, P., Vial, J.-C.: 1993, Astron. Astrophys. Suppl. 99, 513.

    ADS  Google Scholar 

  • Gunár, S.: 2014, In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) Nature of Prominences and Their Role in Space Weather, IAU Symp. 300, 59.

    Google Scholar 

  • Gunár, S., Mackay, D.H., Anzer, U., Heinzel, P.: 2013, Astron. Astrophys. 551, 3.

    Article  ADS  Google Scholar 

  • Gunár, S., Mackay, D.H.: 2015, Astrophys. J., submitted.

  • Gunár, S., Heinzel, P., Anzer, U., Schmieder, B.: 2008, Astron. Astrophys. 490, 307.

    Article  ADS  Google Scholar 

  • Gunár, S., Mein, P., Schmieder, B., Heinzel, P., Mein, N.: 2012, Astron. Astrophys. 543, 93.

    Article  ADS  Google Scholar 

  • Harrison, R.A., Carter, M.K., Clark, T.A., Lindsey, C., Jefferies, J.T., Sime, D.G., et al.: 1993, Astron. Astrophys. 274, L9.

    ADS  Google Scholar 

  • Heasley, J.N., Mihalas, D.: 1976, Astrophys. J. 205, 273.

    Article  ADS  Google Scholar 

  • Heinzel, P.: 2014, In: Vial, J.C., Engvold, O. (eds.) Solar Prominences, Springer, Berlin 103.

    Google Scholar 

  • Heinzel, P., Anzer, U.: 2001, Astron. Astrophys. 375, 1082.

    Article  ADS  Google Scholar 

  • Heinzel, P., Anzer, U.: 2014, Astron. Astrophys. 539, 49.

    Article  Google Scholar 

  • Heinzel, P., Avrett, E.H.: 2012, Solar Phys. 277, 31.

    Article  ADS  Google Scholar 

  • Heinzel, P., Gouttebroze, P., Vial, J.-C.: 1994, Astron. Astrophys. 292, 656.

    ADS  Google Scholar 

  • Heinzel, P., Schmieder, B., Fárnik, F., Schwartz, P., Labrosse, N., Kotrč, P., et al.: 2008, Astrophys. J. 686, 1383.

    Article  ADS  Google Scholar 

  • Hillier, A., van Ballegooijen, A.: 2013, Astrophys. J. 766, 126.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1990, In: Ruzdjak, V., Tandberg-Hanssen, E. (eds.) Dynamics of Quiescent Prominences, Lecture Notes in Physics 363, Springer, Berlin 187.

    Chapter  Google Scholar 

  • Irimajiri, Y., Takano, T., Nakajima, H., Shibasaki, K., Hanaoka, Y., Ichimoto, K.: 1995, Solar Phys. 156, 363.

    Article  ADS  Google Scholar 

  • Jejčič, S., Heinzel, P.: 2009, Solar Phys. 254, 89.

    Article  ADS  Google Scholar 

  • Karlický, M., Bárta, M., Dabrowski, B.P., Heinzel, P.: 2012, Solar Phys. 268, 165.

    Article  ADS  Google Scholar 

  • Karzas, W.J., Latter, R.: 1961, Astrophys. J. Suppl. 6, 167.

    Article  ADS  Google Scholar 

  • Kurucz, R.L.: 1970, SAO Special Rep. 309, Smithsonian Astrophysical Observatory.

  • Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., Kilper, G.: 2010, Space Sci. Rev. 151, 243.

    Article  ADS  Google Scholar 

  • Loukitcheva, M., Solanki, S.K., Carlsson, M., Stein, R.F.: 2004, Astron. Astrophys. 419, 747.

    Article  ADS  Google Scholar 

  • Mein, P.: 1991, Astron. Astrophys. 248, 669.

    ADS  Google Scholar 

  • Mihalas, D.: 1978, Stellar Atmospheres, 2nd edn. Freeman, San Francisco, 225.

    Google Scholar 

  • Parenti, S.: 2014, Living Rev. Solar Phys. 11(1). http://solarphysics.livingreviews.org/Articles/lrsp-2014-1/ .

  • Rompolt, B., Mein, P., Mein, N., Rudawy, P., Berlicki, A.: 1994, In: von Alvensleben, A. (ed.) JOSO Annual Report 1993, Joint Organization for Solar Observations, 87.

    Google Scholar 

  • Rybicki, G.B., Lightman, A.P.: 1979, Radiative Processes in Astrophysics, Wiley, New York, 162.

    Google Scholar 

  • Schmieder, B., Chandra, R., Berlicki, A., Mein, P.: 2010, Astron. Astrophys. 514, 68.

    Article  ADS  Google Scholar 

  • Sramek, R., Morita, K., Sugimoto, M., Napier, P., Miccolis, M., Yagoubov, P., et al.: 2012, In: Stepp, L.M., Gilmozzi, R., Hall, H.J. (eds.) Ground-Based and Airborne Telescopes IV, Proc. SPIE 8444, 84442K.

    Chapter  Google Scholar 

  • Tsuneta, S., Suematsu, Y., Ichimoto, K., Shimizu, T., Otsubo, M., Nagata, S., et al.: 2008, Solar Phys. 249, 167.

    Article  ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Rouppe van der Voort, L.: 2009, Astron. Astrophys. 503, 225.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We dedicate this article to the memory of our colleague and friend Stanislav (Stan) Stefl, who spent his last time at the ALMA facility in Chile. PH acknowledges support from grant 209/12/0906 of the Grant Agency of the Czech Republic. MB and MK acknowledge support from grant P209/12/0103 of the Grant Agency of the Czech Republic. This work was supported by the institutional project RVO 67985815 of the Astronomical Institute of the Academy of Sciences of the Czech Republic. This research was partially performed under the support of the European Commission through the CIG grant PCIG-GA-2011-304265 (SERAF) and grant 13-24782S of the Grant Agency of the Czech Republic. MB thanks Anita M. Richards for helpful discussions of the ALMA simulations. We also thank Ulrich Anzer for helpful discussions and the anonymous referee for very useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rudawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinzel, P., Berlicki, A., Bárta, M. et al. On the Visibility of Prominence Fine Structures at Radio Millimeter Wavelengths. Sol Phys 290, 1981–2000 (2015). https://doi.org/10.1007/s11207-015-0719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0719-7

Keywords

Navigation