Skip to main content
Log in

Numerical simulations for the non-linear Molodensky problem

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We present a boundary element method to compute numerical approximations to the non-linear Molodensky problem, which reconstructs the surface of the Earth from the gravitational potential and the gravity vector. Our solution procedure solves a sequence of exterior oblique Robin problems and is based on a Nash-Hörmander iteration. We apply smoothing with the heat equation to overcome a loss of derivatives in the surface update. Numerical results show the error between the approximation and the exact solution in a model problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardalan A.A. and Grafarend E.W., 2001. Somigliani-Pizzetti gravity: The international gravity formula accurate to the sub-nanoGal level. J. Geodesy, 75, 424–437.

    Article  Google Scholar 

  • Costea A., Gimperlein H. and Stephan E., 2013. A Nash-Hörmander iteration and boundary elements for the Molodensky problem. Numer. Math., DOI: 10.1007/s00211-013-0579-8 (in print).

    Google Scholar 

  • Čunderlík R. and Mikula K., 2010. Direct BEM for high-resolution global gravity field modelling. Stud. Geophys. Geod., 54, 219–238.

    Article  Google Scholar 

  • Čunderlík R., Mikula K. and Mojzeš M., 2008. Numerical solution of the linearized fixed gravimetric boundary-value problem. J. Geodesy, 82, 15–29.

    Article  Google Scholar 

  • Čunderlík R., Mikula K. and Tunega M., 2013. Nonlinear diffusion filtering of data on the earths surface. J. Geodesy, 87, 143–160.

    Article  Google Scholar 

  • Fasshauer G. and Jerome J.W., 1999. Multistep approximation algorithms: Improved convergence rates through postconditioning with smoothing kernels. Adv. Comput. Math., 10, 1–27, DOI: 10.1023/A:1018962112170.

    Article  Google Scholar 

  • Freeden W. and Mayer C., 2006. Multiscale solution for the Molodensky problem on regular telluroidal surfaces. Acta Geod. Geophys. Hungarica, 41, 55–86.

    Article  Google Scholar 

  • Heck B., 2002. Integral equation methods in physical geodesy. In: Grafarend E.W., Krumm F.W. and Schwarze V.S. (Eds.), Geodesy — The Challenge of the 3rd Millenium. Springer-Verlag, Heidelberg, Germany, 197–206.

    Google Scholar 

  • Heiskanen W.A. and Moritz H., 1993. Physical Geodesy. W.H. Freeman, San Francisco, CA.

    Google Scholar 

  • Holota P., 1997. Coerciveness of the linear gravimetric boundary problem and a geometrical interpretation. J. Geodesy, 71, 640–651.

    Article  Google Scholar 

  • Hörmander L., 1976. The boundary problems of physical geodesy. Arch. Rational Mech. Anal., 62, 1–52.

    Article  Google Scholar 

  • Jerome J.W., 1985. An adaptive Newton algorithm based on numerical inversion: regularization as postconditioner. Numer. Math., 47, 123–138.

    Article  Google Scholar 

  • Klees R., van Gelderen M., Lage C. and Schwab C., 2001. Fast numerical solution of the linearized Molodensky problem. J. Geodesy, 75, 349–362, DOI: 10.1007/s001900100183.

    Article  Google Scholar 

  • Maischak M., 2001a. Analytical Evaluation of Potentials and Computation of Galerkin Integrals on Triangles and Parallelograms. Technical Report, ifam50 (http://www.ifam.unihannover.de/~maiprogs/).

    Google Scholar 

  • Maischak M., 2001b. Technical Manual of the Program System maiprogs (http://www.ifam.unihannover.de/~maiprogs/).

    Google Scholar 

  • Molodensky M., 1958. Grundbegriffe der geodätischen Gravimetrie. VEB Verlag Technik, Berlin, Germany (in German).

    Google Scholar 

  • Molodensky M.S., Yeremeev V.F. and Yurkina M.I., 1960. Methods for study of the external gravitational field and figure of the Earth. TRUDY TsNIIGAiK, 131, Geodezizdat, Moscow, Russia (English translat.: Israel Program for Scientific Translation, Jerusalem 1962).

    Google Scholar 

  • Moser J., 1966a. A rapidly convergent iteration method and nonlinear differential equations — I. Ann. Scuola Norm. Sup. Pisa, 20, 265–315.

    Google Scholar 

  • Moser J., 1966b. A rapidly convergent iteration method and nonlinear differential equations — II. Ann. Scuola Norm. Sup. Pisa, 20, 499–535.

    Google Scholar 

  • Nash J., 1960. The embedding problem for Riemannian manifolds. Ann. Math., 63, 20–23.

    Article  Google Scholar 

  • Schulz H., Schwab C. and Wendland W.L., 1998. The computation of potentials near and on the boundary by an extraction technique for boundary element methods. Comput. Meth. Appl. Mech. Eng., 157, 225–238.

    Article  Google Scholar 

  • Schwab C., 1994. Variable order composite quadrature of singular and nearly singular integrals. Computing, 53, 173–194.

    Article  Google Scholar 

  • Schwab C. and Wendland W.L., 1999. On the extraction technique in boundary integral equations. Math. Comp., 68, 91–122.

    Article  Google Scholar 

  • Seo S., Chung M.K. and Vorperian H.K., 2010. Heat kernel smoothing using Laplace-Beltrami eigenfunctions. In: Jiang T., Navab N., Pluim J.P.W. and Viergever M.A. (Eds.), Medical Image Computing and Computer-Assisted Intervention — MICCAI 2010: Part III. Lecture Notes in Computer Science 6363, Springer-Verlag, Heidelerg, Germany, 505–512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst P. Stephan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banz, L., Costea, A., Gimperlein, H. et al. Numerical simulations for the non-linear Molodensky problem. Stud Geophys Geod 58, 489–504 (2014). https://doi.org/10.1007/s11200-013-0141-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-0141-2

Keywords

Navigation