Skip to main content
Log in

How R&D partner diversity influences innovation performance: an empirical study in the nano-biopharmaceutical field

  • Published:
Scientometrics Aims and scope Submit manuscript

A Correction to this article was published on 05 March 2019

This article has been updated

Abstract

R&D partner diversity is generally acknowledged to help organizations to improve innovation performance. This study investigates the influence mechanism in depth by introducing technological diversification as mediator and the structural holes of new knowledge elements from R&D partners and the degree centrality of the focal organization’s knowledge elements as two moderators. The empirical analysis is based on patent data in the emerging nano-biopharmaceutical field and includes 554 innovative organizations. Results show that partners’ organizational diversity and geographical diversity have positive effects on focal organizations’ innovation performance through improving technological diversification. The structural holes of new knowledge elements from R&D partners and the degree centrality of the focal organization’s knowledge elements moderate the process in the way that when they are at high levels, the indirect positive effects of partner diversity on innovation performance through technological diversification are strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 05 March 2019

    In the original publication of the article, the Acknowledgements section was omitted. The Acknowledgements section is given in this correction.

  • 05 March 2019

    In the original publication of the article, the Acknowledgements section was omitted. The Acknowledgements section is given in this correction.

Notes

  1. Note that universities are not included in the category of public research institutes because these two kinds of organizations may differ in their roles and functions in innovation system (De Fuentes and Dutrénit 2012).

  2. E/I index indicates the extent to which organization collaborate across groups or within groups. It’s calculated as follows: (inter-group collaboration – intra-group collaboration)/(inter group collaboration + intra-group collaboration).

References

  • Ahuja, G. (2000). The duality of collaboration: Inducements and opportunities in the formation of inter-firm linkages. Strategic Management Journal, 21(3), 317–343.

    Article  Google Scholar 

  • Ahuja, G., & Lampert, C. M. (2001). Entrepreneurship in a large corporation: A longitudinal study of how established firms create breakthrough inventions. Strategic Management Journal, 22(6–7), 521–543.

    Article  Google Scholar 

  • Archibugi, D. (1992). Patenting as an indicator of technological innovation: A review. Science & Public Policy, 19(6), 357–368.

    Google Scholar 

  • Arora, S. K., Porter, A. L., Youtie, J., & Shapira, P. L. (2013). Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics, 95(1), 351–370.

    Article  Google Scholar 

  • Arundel, A., & Kabla, I. (1998). What percentages of innovations are patented: Empirical estimates for European firms. Research Policy, 27(2), 127–141.

    Article  Google Scholar 

  • Beers, C. V., & Zand, F. (2014). R&D cooperation, partner diversity, and innovation performance: An empirical analysis. Journal of Product Innovation Management, 31(2), 292–312.

    Article  Google Scholar 

  • Belderbos, R., Carree, M., & Lokshin, B. (2006). Complementarity in R&D cooperation strategies. International Journal of Industrial Organization, 28(4), 401–426.

    Article  Google Scholar 

  • Belenzon, S., & Patacconi, A. (2013). Innovation and firm value: An investigation of the changing role of patents, 1985–2007. Research Policy, 42(8), 1496–1510.

    Article  Google Scholar 

  • Bhattacharya, S., Shilpa, & Bhati, M. (2012). China and India: The two new players in the nanotechnology race. Scientometrics, 93(1), 59–87.

    Article  Google Scholar 

  • Bishop, K., D’Este, P., & Neely, A. (2011). Gaining from interactions with universities: Multiple methods for nurturing absorptive capacity. Research Policy, 40(1), 30–40.

    Article  Google Scholar 

  • Blundell, R., Griffith, R., & Van Reenen, J. (1995). Dynamic count data models of techno-logical innovation. Economic Journal, 105(429), 333–344.

    Article  Google Scholar 

  • Burt, R. S. (1992). Structural holes: The social structure of competition. Cambridge: Harvard University Press.

    Google Scholar 

  • Burt, R. S. (2004). Structural holes and good ideas. American Journal of Sociology, 110(2), 349–399.

    Article  Google Scholar 

  • Carnabuci, G. (2010). The ecology of technological progress: How symbiosis and competition affect the growth of technology domains. Social Forces, 88(5), 2163–2187.

    Article  Google Scholar 

  • Carnabuci, G., & Bruggeman, J. (2009). Knowledge specialization, knowledge brokerage and the uneven growth of technology domains. Social Forces, 88(2), 607–641.

    Article  Google Scholar 

  • Chen, Y. S., & Chang, K. C. (2012). Using the entropy-based patent measure to explore the influences of related and unrelated technological diversification upon technological competences and firm performance. Scientometrics, 90(3), 825–841.

    Article  Google Scholar 

  • Chen, Z. F., & Guan, J. C. (2011). Mapping of biotechnology patents of China from 1995–2008. Scientometrics, 88(1), 73–89.

    Article  Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.

    Article  Google Scholar 

  • Coleman, J. S. (1990). Foundations of social theory. Cambridge: Harvard University Press.

    Google Scholar 

  • Crisp, R. J., & Turner, R. N. (2011). Cognitive adaptation to the experience of social and cultural diversity. Psychological Bulletin, 137(2), 242–266.

    Article  Google Scholar 

  • Current Partnering (2016). Top pharmaceutical companies. http://www.currentpartnering.com/insight/top-pharmaceutical-companies/.

  • Cyert, R. M., & Goodman, P. S. (1997). Creating effective university-industry alliances: An organizational learning perspective. Organizational Dynamics, 2(4), 45–57.

    Article  Google Scholar 

  • Cyert, R. M., & March, J. G. (1963). A behavioral theory of the firm. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • De Fuentes, C., & Dutrénit, G. (2012). Best channels of academia–industry interaction for long-term benefit. Research Policy, 41(9), 1666–1682.

    Article  Google Scholar 

  • Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162.

    Article  Google Scholar 

  • Drejer, I., & Jørgensen, B. H. (2005). The dynamic creation of knowledge: Analyzing public–private collaborations. Technovation, 25(2), 83–94.

    Article  Google Scholar 

  • Du, J., Leten, B., & Vanhaverbeke, W. (2014). Managing open innovation projects with science-based and market-based partners. Research Policy, 43(5), 828–840.

    Article  Google Scholar 

  • Duysters, G., & Lokshin, B. (2011). Determinants of alliance portfolio complexity and its effect on innovative performance of companies. Journal of Product Innovation Management, 28(4), 570–585.

    Article  Google Scholar 

  • Estrada, I., Faems, D., Cruz, N. M., & Santana, P. P. (2016). The role of interpartner dissimilarities in Industry–University alliances: Insights from a comparative case study. Research Policy, 45(10), 2008–2022.

    Article  Google Scholar 

  • Faems, D., Van Looy, B., & Debackere, K. (2005). Inter-organizational collaboration and innovation: Towards a portfolio approach. Journal of Product Innovation Management, 22(3), 238–250.

    Article  Google Scholar 

  • Fleming, L. (2001). Recombinant uncertainty in technology search. Management Science, 47(1), 117–132.

    Article  Google Scholar 

  • Fleming, L., Mingo, S., & Chen, D. (2007). Collaborative brokerage, generative creativity, and creative success. Administrative Science Quarterly, 52(3), 443–475.

    Article  Google Scholar 

  • Gao, X., Guo, X., & Guan, J. (2014). An analysis of the patenting activities and collaboration among industry–university–research institutes in the Chinese ICT sector. Scientometrics, 98(1), 247–263.

    Article  Google Scholar 

  • Garcia-Vega, M. (2006). Does technological diversification promote innovation: An empirical analysis for European firms. Research Policy, 35(2), 230–246.

    Article  Google Scholar 

  • George, G., Zahra, S. A., & Wood, D. R. (2002). The effects of business–university alliances on innovative output and financial performance: A study of publicly traded biotechnology companies. Journal of Business Venturing, 17(6), 577–609.

    Article  Google Scholar 

  • Granstrand, O. (1998). Towards a theory of technology-based firm. Research Policy, 27(5), 465–489.

    Article  Google Scholar 

  • Griliches, Z. (1990). Patent statistics as economic indicators: A survey. Journal of Economic Literature, 28(28), 1661–1707.

    Google Scholar 

  • Guan, J. C., & Liu, N. (2016). Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Research Policy, 45(1), 97–112.

    Article  Google Scholar 

  • Guan, J. C., & Yan, Y. (2016). Technological proximity and recombinative innovation in the alternative energy field. Research Policy, 45(7), 1460–1473.

    Article  Google Scholar 

  • Harrison, D. A., & Klein, K. J. (2007). What’s the difference? Diversity constructs as separation, variety, or disparity in organizations. Academy of Management Review, 32(4), 1199–1228.

    Article  Google Scholar 

  • Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic location of knowledge spillovers as evidenced by patent citations. Quarterly Journal of Economics, 108(3), 577–598.

    Article  Google Scholar 

  • Kauffman, S., Lobo, J., & Macready, W. G. (2000). Optimal search on a technology landscape. Journal of Economic Behavior and Organization, 43(2), 141–166.

    Article  Google Scholar 

  • Kleinknecht, A., & Reinders, H. J. (2012). How good are patents as innovation indicators: Evidence from german CIS data. Oxford: Oxford University Press.

    Google Scholar 

  • Kogut, B., & Zander, U. (1992). Knowledge of the firm, combinative capabilities and the replication of technology. Organization Science, 3(3), 383–397.

    Article  Google Scholar 

  • Krafft, J., Quatraro, F., & Saviotti, P. P. (2011). The knowledge-based evolution in biotechnology: A social network analysis. Economics of Innovation and New Technology, 20(5), 445–475.

    Article  Google Scholar 

  • Laursen, K., & Salter, A. (2006). Open for innovation: The role of openness in explaining innovation performance among UK manufacturing firms. Strategic Management Journal, 27(2), 131–150.

    Article  Google Scholar 

  • Lavie, D., & Miller, S. R. (2008). Alliance portfolio internationalization and firm performance. Organization Science, 19(4), 623–646.

    Article  Google Scholar 

  • Lenoir, T., & Herron, P. (2009). Tracking the current rise of Chinese pharmaceutical bionanotechnology. Journal of Biomedical Discovery and Collaboration, 4, 8.

    Google Scholar 

  • Leonard-Barton, D. (1992). Core capabilities and core rigidities: A paradox in managing new product development. Strategic Management Journal, 13(S1), 111–126.

    Article  Google Scholar 

  • Leung, A. K. Y., & Chiu, C. Y. (2010). Multicultural experience, idea receptiveness, and creativity. Journal of Cross-Cultural Psychology, 41(5–6), 723–741.

    Article  Google Scholar 

  • Leung, A. K. Y., Maddux, W. W., Galinsky, A. D., & Chiu, C. (2008). Multicultural experience enhances creativity: The when and how. American Psychologist, 63(3), 169–181.

    Article  Google Scholar 

  • Levitt, B., & March, J. G. (1988). Organizational learning. Annual Review of Sociology, 14, 319–340.

    Article  Google Scholar 

  • Lin, H. (2012). Cross-sector alliances for corporate social responsibility partner heterogeneity moderates environmental strategy outcomes. Journal of Business Ethics, 110(2), 219–229.

    Article  Google Scholar 

  • Markides, C. C., & Williamson, P. J. (1994). Related diversification, core competencies and corporate performance. Strategic Management Journal, 15(S2), 149–165.

    Article  Google Scholar 

  • Martin, B. R. (2012). Are universities and university research under threat? Towards an evolutionary model of university speciation. Cambridge Journal of Economics, 36(3), 543–565.

    Article  Google Scholar 

  • Miotti, L., & Sachwald, F. (2003). Co-operative R&D: Why and with whom?: An integrated framework of analysis. Research Policy, 32(8), 1481–1499.

    Article  Google Scholar 

  • Nieto, M. J., & Santamaria, L. (2007). The importance of diverse collaborative networks for the novelty of product innovation. Technovation, 27(6–7), 367–377.

    Article  Google Scholar 

  • Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organization Science, 5(1), 14–37.

    Article  Google Scholar 

  • OECD. (2005). A framework for biotechnology statistics. Paris: OECD.

    Google Scholar 

  • Oerlemans, L. A. G., Knoben, J., & Pretorius, M. W. (2013). Alliance portfolio diversity, radical and incremental innovation: The moderating role of technology management. Technovation, 33(6–7), 234–246.

    Article  Google Scholar 

  • Okuyama, R., & Osada, H. (2013). University–industry collaboration in drug discovery in Japan: An empirical analysis over thirty years. In Technology Management in the It-Driven Services. (pp. 2704–2710). IEEE.

  • Park, H., & Yoon, J. (2014). Assessing coreness and intermediarity of technology sectors using patent co-classification analysis: The case of Korean national R&D. Scientometrics, 98(2), 853–890.

    Article  Google Scholar 

  • Pezzini, I., Mattoli, V., & Ciofani, G. (2017). Mitochondria and neurodegenerative diseases: The promising role of nanotechnology in targeted drug delivery. Expert Opinion on Drug Delivery, 14(4), 513–523.

    Article  Google Scholar 

  • Porter, M. E. (1990). The competitive advantage of nations. Harvard Business Review, 68(2), 73–91.

    Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891.

    Article  Google Scholar 

  • Quintana-García, C., & Benavides-Velasco, C. A. (2008). Innovative competence, exploration and exploitation: The influence of technological diversification. Research Policy, 37(3), 492–507.

    Article  Google Scholar 

  • Rawat, M., Singh, D., Saraf, S., & Saraf, S. (2006). Nanocarriers: Promising vehicle for bioactive drugs. Biological & Pharmaceutical Bulletin, 29(9), 1790–1798.

    Article  Google Scholar 

  • Santoro, M. D., & Chakrabarti, A. (2002). Firm size and technology centrality in industry–university interactions. Research Policy, 31(7), 1163–1180.

    Article  Google Scholar 

  • Schilling, M., & Phelps, C. (2007). Interfirm collaboration networks: The impact of large-scale network structure on firm innovation. Management Science, 53(7), 1113–1126.

    Article  MATH  Google Scholar 

  • Scott, J. T. (1996). Environmental research joint ventures among manufacturers. Review of Industrial Organization, 11(5), 655–679.

    Article  MathSciNet  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Singh, H., Kryscynski, D., Li, X., & Gopal, R. (2016). Pipes, pools, and filters: How collaboration networks affect innovative performance. Strategic Management Journal, 37(8), 1649–1666.

    Article  Google Scholar 

  • Stahl, G. K., Maznevski, M. L., Voigt, A., & Jonsen, K. (2010). Unraveling the effects of cultural diversity in teams: A meta-analysis of research on multicultural work groups. Journal of International Business Studies, 41(4), 690–709.

    Article  Google Scholar 

  • Statnano (2015). Top 20 Countries in Nanotechnology Publications. http://statnano.com/news/48147.

  • Teachman, J. (1980). Analysis of population diversity. Sociological Methods and Research, 8, 341–362.

    Article  Google Scholar 

  • Tushman, M. L., & Anderson, P. (1986). Technological discontinuities and organizational environments. Administrative Science Quarterly, 31(3), 439–465.

    Article  Google Scholar 

  • Wang, C., Rodan, S., Fruin, M., & Xu, X. (2014). Knowledge networks, collaboration networks, and exploratory innovation. Academy of Management Journal, 57(2), 484–514.

    Article  Google Scholar 

  • Williams, H. M., & Mean, L. J. (2004). Measuring gender composition in work groups: A comparison of existing methods. Organizational Research Methods, 7(4), 456–474.

    Article  Google Scholar 

  • Wuyts, S., & Dutta, S. (2014). Benefiting from alliance portfolio diversity: The role of past internal knowledge creation strategy. Journal of Management, 40(6), 1653–1674.

    Article  Google Scholar 

  • Yayavaram, S., & Ahuja, G. (2008). Decomposability in knowledge structures and its impact on the usefulness of inventions and knowledge-based malleability. Administrative Science Quarterly, 53(2), 333–362.

    Article  Google Scholar 

  • Zhan, S., Bendapudi, N., & Hong, Y. Y. (2015). Re-examining diversity as a double-edged sword for innovation process. Journal of Organizational Behavior, 36(7), 1026–1049.

    Article  Google Scholar 

  • Zhang, Y., Chen, K., Zhu, G., Yam, R. C. M., & Guan, J. (2016). Inter-organizational scientific collaborations and policy effects: An ego-network evolutionary perspective of the Chinese academy of sciences. Scientometrics, 108(3), 1–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoying Tang.

Appendix

Appendix

See Table 6.

Table 6 Definitions of search queries for patents in the nano-biopharmaceutical field

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Tang, C. How R&D partner diversity influences innovation performance: an empirical study in the nano-biopharmaceutical field. Scientometrics 116, 1487–1512 (2018). https://doi.org/10.1007/s11192-018-2831-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-018-2831-6

Keywords

Navigation