Skip to main content
Log in

Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Bibliometric analysis of publication metadata is an important tool for investigating emerging fields of technology. However, the application of field definitions to define an emerging technology is complicated by ongoing and at times rapid change in the underlying technology itself. There is limited prior work on adapting the bibliometric definitions of emerging technologies as these technologies change over time. The paper addresses this gap. We draw on the example of the modular keyword nanotechnology search strategy developed at Georgia Institute of Technology in 2006. This search approach has seen extensive use in analyzing emerging trends in nanotechnology research and innovation. Yet with the growth of the nanotechnology field, novel materials, particles, technologies, and tools have appeared. We report on the process and results of reviewing and updating this nanotechnology search strategy. By employing structured text-mining software to profile keyword terms, and by soliciting input from domain experts, we identify new nanotechnology-related keywords. We retroactively apply the revised evolutionary lexical query to 20 years of publication data and analyze the results. Our findings indicate that the updated search approach offers an incremental improvement over the original strategy in terms of recall and precision. Additionally, the updated strategy reveals the importance for nanotechnology of several emerging cited-subject categories, particularly in the biomedical sciences, suggesting a further extension of the nanotechnology knowledge domain. The implications of the work for applying bibliometric definitions to emerging technologies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555–564.

    Article  Google Scholar 

  • Buckland, M., & Gey, F. (1994). The relationship between recall and precision. Journal of the American Society for Information Science, 45(1), 12–19.

    Article  Google Scholar 

  • Cunningham, S. & Porter, A. (2011). Bibliometric discovery of innovation and commercialization pathways in nanotechnology. Proceedings of the Portland International Conference on Management of Engineering and Technology (PICMET 2011), Portland OR. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6017795.

  • De Bellis, N. (2009). Bibliometrics and citation analysis. Lanham: Scarecrow Press.

    Google Scholar 

  • Evans, J. A., & Foster, J. G. (2011). Metaknowledge. Science, 331(6018), 721–725.

    Article  MathSciNet  MATH  Google Scholar 

  • Grieneisen, M. (2010). The proliferation of nanotechnology journals. Nature Nanotechnology, 7, 273–274.

    Article  Google Scholar 

  • Grieneisen, M. L., & Zhang, M. (2011). Nanoscience and nanotechnology: evolving definitions and growing footprint on the scientific landscape. Small, 7(20), 2836–2839.

    Article  Google Scholar 

  • Huang, C., Notten, A., & Rasters, N. (2010). Nanoscience and technology publications and patents: a review of social science studies and search strategies. Journal of Technology Transfer, 36(2), 145–172.

    Article  Google Scholar 

  • Lakatos, I. (1978).The methodology of scientific research programmes. In J. Worrall, G. Currie (Ed.), Philosophical papers. Cambridge: Cambridge University Press.

  • Leydesdorff, L., Carley, S., & Rafols, I. (2012). Global maps of science based on the new Web-of-Science categories. Preprint available at: http://arxiv.org/abs/1202.1914.

  • Leydesdorff, L., & Zhou, P. (2007). Nanotechnology as a field of science: its delineation in terms of journals and patents. Scientometrics, 70(3), 693–713.

    Article  Google Scholar 

  • Lin, M., & Zhang, J. (2007). Language trends in nanoscience and technology: the case of Chinese-language publications. Scientometrics, 70(3), 555–564.

    Article  Google Scholar 

  • Mogoutov, A., & Kahane, B. (2007). Data search strategy for science and technology emergence: a scalable and evolutionary query for nanotechnology tracking. Research Policy, 36(6), 893–903.

    Article  Google Scholar 

  • Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70(5), 1–9. (056131).

    Google Scholar 

  • NSTC (2007). The National Nanotechnology Initiative: research and development leading to a revolution in technology and industry. Subcommittee on Nanoscale Science, Engineering and Technology, National Science and Technology Council. Washington: Executive Office of the President. http://www.sandia.gov/NINE/documents/NNI_Strategic_Plan_2007.pdf

  • PCAST (2010). Report to the President and Congress on the Third Assessment of the National Nanotechnology Initiative. President’s Council of Advisors on Science and Technology. Washington: Executive Office of the President. http://www.whitehouse.gov/administration/eop/ostp/pcast/docsreports

  • PCAST (2012). Report to the President and Congress on the Fourth Assessment of the National Nanotechnology Initiative. President’s Council of Advisors on Science and Technology. Washington: Executive Office of the President. http://www.whitehouse.gov/administration/eop/ostp/pcast/docsreports

  • Porter, A. L., & Youtie, J. (2009). How interdisciplinary is nanotechnology? Journal of Nanoparticle Research, 11(5), 1023–1041.

    Article  Google Scholar 

  • Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.

    Article  Google Scholar 

  • Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: a new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61(9), 1871–1887.

    Article  Google Scholar 

  • Roco, M. C. (2004). Nanoscale science and engineering: unifying and transforming tools. AIChE Journal, 50(5), 890–897.

    Article  Google Scholar 

  • Ruhnau, B. (2000). Eigenvector-centrality—a node-centrality? Social Networks, 22(4), 357–365.

    Article  Google Scholar 

  • Shapira, P., & Wang, J. (2009). From lab to market? Strategies and issues in the commercialization of nanotechnology in China. Journal of Asian Business Management, 8(4), 461–489.

    Article  Google Scholar 

  • Shapira, P., & Wang, J. (2010). Follow the money. Nature, 468(7324), 627–628.

    Article  Google Scholar 

  • Shapira, P., & Youtie, J. (2008). Nanodistricts in the United States. Economic Development Quarterly, 22(3), 187–199.

    Article  Google Scholar 

  • Subramanian, V., Youtie, J., Porter, A. L., & Shapira, P. (2010). Is there a shift to “active nanostructures”? Journal of Nanoparticle Research, 12(1), 1–10.

    Article  Google Scholar 

  • Thomas, D. G., Pappu, R. V., & Baker, N. A. (2010). NanoParticle ontology for cancer nanotechnology research. Journal of Biomedical Informatics, 44(1), 59–74.

    Article  Google Scholar 

  • Youtie, J., Shapira, P., & Porter, A. L. (2008). Nanotechnology publications and citations by leading countries and blocs. Journal of Nanoparticle Research, 10, 981–986.

    Article  Google Scholar 

  • Zitt, M., & Bassecoulard, E. (2006). Delineating complex scientific fields by an hybrid lexical-citation method: an application to nanosciences. Information Processing and Management, 42(6), 1513–1531.

    Article  Google Scholar 

  • Zitt, M., Lelu, A., & Bassecoulard, E. (2011). Hybrid citation-word representations in science mapping: portolan charts of research fields? Journal of the American Society for Information Science and Technology, 62(1), 19–39.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Center for Nanotechnology in Society at Arizona State University (National Science Foundation Awards 0531194 and 0937591). The findings in this working paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Shapira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, S.K., Porter, A.L., Youtie, J. et al. Capturing new developments in an emerging technology: an updated search strategy for identifying nanotechnology research outputs. Scientometrics 95, 351–370 (2013). https://doi.org/10.1007/s11192-012-0903-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-012-0903-6

Keywords

Mathematics Subject Classification

JEL Classification

Navigation