Skip to main content

Advertisement

Log in

Observation and Inference in Chemistry Teaching: a Model-Based Approach to the Integration of the Macro and Submicro Levels

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The aim of this article is to propose a didactical approach to establish appropriate relations between different kinds of chemical knowledge and explanations at the macro and the submicro level. Incorrectly moving between these two levels is regarded as the cause of many misconceptions in school chemistry, and several theoretical frameworks have been proposed to remedy those misconceptions. Our literature review of chemistry education shows that a focus of attention for the macro-submicro interplay problem is put in the relations between observations and inferences; we examine such relations with the aid of ideas from the philosophy of science and the specific philosophy of chemistry. We propose a model-based approach that recognises the continuum between empirical and theoretical, descriptive and explanatory in chemical concepts. Finally, we provide an “exemplary activity” on the topic of gases based on this approach, and we evaluate its suitability in terms of some well-established ideas in didactics of science/chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. I.e. science education understood as an academic discipline, as in the “continental” tradition. In this sense, the adjective “didactical” should be here understood as “instructional”.

  2. This is stated, for instance, by prominent chemists as Linus Pauling (1970/1947) and philosophers of chemistry as Hasok Chang (2017).

  3. These have been labelled as levels of thought, description, teaching, representation, etc. (Talanquer, 2011).

  4. That is, those that push “down” the logic of one level to the other.

  5. The philosophy of chemistry shows the complex nature of the emergence and supervenience of macro features, the difficulties in the asymmetric part-whole relationship, the delicate character of causality, the hypothetical nature of chemical propositions and other equally non-trivial issues (e.g. Hendry, 2006, 2010; Scerri, 2007; Scerri & McIntyre, 1997; Schummer, 2004).

  6. Such a relationship, as the great shift towards the “new philosophy of science” in the 1960s has eloquently shown (e.g. Hanson, 1958; Kuhn, 1962; Lawson, 2003, 2010), is far from transparent.

  7. In the macro model, the relationship with the etymology of “boil” (from Latin bulla: “bubble”) is central.

  8. Here the prefix “inter-” (“between”) is crucial.

  9. Indeed, this is precisely the etymology of the Latin word “conceptus”, which from a verb meaning “hold” or “catch”.

  10. We take one of Charles S. Peirce’s simplest definitions of a sign, contained in a very early manuscript of 1873: a sign can be understood as anything (an object, property, event, symbol, etc.) that “stands for” another thing to an interpreter of it and “points” him/her to the latter (Peirce, 1982–1999).

  11. Charles Sanders Peirce’s writings span from the 1860s to the 1910s. The dates of the citations provided correspond to more recent collections of a diversity of his published and posthumous pieces.

  12. In a first-order approximation it was, of course, since we adhere to a realist account of science, where metals and calxes have an existence independent of our knowledge and our will.

  13. “Phenomenon observed from old times […] and that has become today an incontestable truth” (our translation).

  14. More or less understood as a kind of abduction (Pietarinen & Bellucci, 2014).

  15. In the sense that we have given to this notion, recognising that such knowledge is seen through the lens of theories.

  16. Taber’s (2013) conceptualisations of the descriptive and explanatory levels intertwine here, as we will show later.

  17. Often used (erroneously) with the intention of quantitatively illustrating Graham’s law on gas diffusion; see, for instance https://www.colorado.edu/lab/lecture-demo-manual/g420-grahams-law-diffusion-nh3-and-hcl-diffusion. In this respect, it should be noted that the original law of diffusion was proposed by Thomas Graham in 1831 for an experimental setup of equal pressure diffusion, which was quite different from that of the “pipe experience”, where equal flux diffusion occurs (Mason & Kronstadt, 1967). In the case of the pipe, new gases (air) are introduced, and the law then becomes only approximate, or downright wrong. As such, it cannot be completely accounted for by the submicro model in the way it is sometimes done in textbooks, since many affecting factors are disregarded. As Mason and Kronstadt (1967: 740) pungently remark, it is a law “easy to demonstrate experimentally, but rather difficult to explain theoretically”.

  18. Now understood as Peircian “indices”.

  19. It is of course the case, as pointed out by one of the anonymous reviewers of our paper, that the whole cycle in general, and this stage 5/new stage 1 in particular, can be done using a chemical model of/at the macro (with substances, chemical change, and the variable “temperature”), with no recurrence to the submicro model. Our focus on the second strategy is coherent with our aim of proposing new insights into the macro-submicro problem.

References

  • Adadan, E. (2012). Using multiple representations to promote grade 11 students’ scientific understanding of the particle theory of matter. Research in Science Education, 43(3), 1079–1105. https://doi.org/10.1007/s11165-012-9299-9.

    Article  Google Scholar 

  • Adadan, E., Trundle, K. C., & Irving, K. E. (2010). Exploring Grade 11 students’ conceptual pathways of the particulate nature of matter in the context of multirepresentational instruction. Journal of Research in Science Teaching, 47(8), 1004–1035. https://doi.org/10.1002/tea.20366.

    Article  Google Scholar 

  • Adúriz-Bravo, A. (2013). A ‘Semantic’ view of scientific models for science education. Science & Education, 22(7), 1593–1611.

  • Adúriz Bravo, A. (2015). Pensamiento “basado en modelos” en la enseñanza de las Ciencias Naturales. Revista del Instituto de Investigaciones en Educación, (6), 20.

  • Adúriz-Bravo, A. (2019). Semantic views on models: An appraisal for science education. In A. Upmeier zu Belzen, D. Krüger, & J. van Driel (Eds.), Towards a competence-based view on models and modeling in science education (pp. 21–37). Cham: Springer. https://doi.org/10.1007/s11191-011-9431-7.

  • Adúriz-Bravo, A. (2020). Contributions to the nature of science: Scientific investigation as inquiry, modeling, and argumentation. In C. N. El-Hani, M. Pietrocola, E. F. Mortimer, & M. R. Otero (Eds.), Science education research in Latin America (pp. 394–425). Leiden: Brill/Sense.

  • Agarkar, S., & Brock, R. (2017). Learning theories in science education. In K. S. Taber & B. Akpan (Eds.), Science education: New directions in mathematics and science education. Sense Publishers. https://doi.org/10.1007/978-94-6300-749-8_7.

    Chapter  Google Scholar 

  • Alyar, M., & Doymuş, K. (2016). Maddenin tanecikli yapısının anlaşılması üzerine analoji ve deneylerin etkisi [The effects of experiments and analogy on the understanding of the particulate nature of matter]. Kastamonu Eğitim Dergisi, 24(3), 1183–1198.

  • Ayas, A. (1998). Fen bilgisi öğretiminde laboratuvar kullanımı [Laboratory use in science teaching]. In Ş Yaşar (Ed.), Fen bilgisi öğretimi [Science teaching]. (pp. 99–113). Anadolu Üniversitesi Açıköğretim Fakültesi Yayınları.

  • Ben-Zvi, R., Bat-Sheva, E., & Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63(1), 64–66. https://doi.org/10.1021/ed063p64.

    Article  Google Scholar 

  • Brook, A., Briggs, H., & Driver, R. (1984). Aspects of secondary students’ understanding of the particulate nature of matter. University of Leeds, Centre for Studies in Science and Mathematics Education.

    Google Scholar 

  • Çakmakci, G., Leach, J., & Donnelly, J. (2006). Students’ ideas about reaction rate and its relationship with concentration or pressure. International Journal of Science Education, 28, 1795–1815. https://doi.org/10.1080/09500690600823490.

    Article  Google Scholar 

  • Çalık, M., Ayas, A., & Ünal, S. (2006). Çözünme kavramiyla ilgili öğrenci kavramalarinin tespiti: Bir yaşlar arasi karşilaştirma çalişmasia [Cross-age study on students’ conceptions of dissolution]. Türk Eğitim Bilimleri Dergisi, 4(3), 309–322.

  • Çavdar, O., Okumuş, S., Alyar, M., & Doymuş, K. (2016). Maddenin taneçikli yapısının anlaşılmasına fakli yöntemlerin ve modellerin etkisi [Effects of using different methods and models on understanding the particulate nature of matter]. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 18(1), 555–592.

  • Cevizci, A. (2010). Paradigma felsefe sozlugu [Paradigm dictionary of philosophy]. Istanbul: Paradigma Publishing.

  • Chalmers, D. J. (2006). Strong and weak emergence. In P. Clayton & P. Davies (Eds.), The re-emergence of emergence: The emergentist hypothesis from science to religion. (pp. 244–254). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199544318.003.0011.

  • Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31, 21–32.

    Google Scholar 

  • Chamizo, J. A. (2013). A new definition of models and modeling in chemistry’s teaching. Science & Education, 22(7), 1613–1632. https://doi.org/10.1007/s11191-011-9407-7.

    Article  Google Scholar 

  • Chang, H. (2017). What history tells us about the distinct nature of chemistry. Ambix, 64(4), 360–374. https://doi.org/10.1080/00026980.2017.1412135.

    Article  Google Scholar 

  • Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: Diagrams. In J. K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education. (pp. 169–191). Springer. https://doi.org/10.1007/978-1-4020-8872-8_9.

    Chapter  Google Scholar 

  • de Vos, W., & Verdonk, A. H. (1996). The particulate nature of matter in science education and in science. Journal of Research in Science Teaching, 33(6), 657–664. https://doi.org/10.1002/(SICI)1098-2736(199608)33:6%3c657::AID-TEA4%3e3.0.CO;2-N.

    Article  Google Scholar 

  • Duhem, P. (1954). The aim and structure of physical theory. Princeton: Princeton University Press.

  • Duran, L. B., & Duran, E. (2004). The 5E instructional model: A learning cycle approach for inquiry-based science teaching. Science Education Review, 3(2), 49–58.

    Google Scholar 

  • Eilks, I., Witteck, T., & Pietzner, V. (2012). The role and potential dangers of visualisation when learning about sub-submicroscopic explanations in chemistry education. CEPS Journal, 2(1), 125–145.

    Google Scholar 

  • Erduran, S. (2000). Emergence and application of philosophy of chemistry in chemical education. School Science Review, 81, 85–87.

    Google Scholar 

  • Erduran, S. (2019). Argumentation in chemistry education: An overview. In S. Erduran (Ed.), Argumentation in chemistry education: Research, policy and practice. (pp. 1–10). Royal Society of Chemistry. https://doi.org/10.1039/9781788012645-00001.

    Chapter  Google Scholar 

  • Erduran, S., Aduriz-Bravo, A., & Naaman, R. M. (2007). Developing epistemologically empowered teachers: examining the role of philosophy of chemistry in teacher education. Science & Education, 16(9–10), 975–989.

  • Ergül, S. (2014). Fiziksel ve kimyasal değişim ile renk değişimi bağlamında yeni bir deneysel yöntem. Eğitim ve Öğretim Araştırmaları Dergisi/Journal of Research in Education and Teaching, 3(4), 168–179.

  • Ergül, S., Sarıtaş, D., Özcan, H. (2020). Hipotetik TGA (Tahmin-Gözlem-Açıklama) döngüsü ile kimyasal değişimin doğasının öğretimi; asit-baz indikatör tepkimesi örneği [Teaching the nature of chemical change through the hypothetical POE (Prediction, Observation, Explanation) cycle: an example of acid-base indicator reaction]. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 490–506. https://doi.org/10.25092/baunfbed.709953.

  • Eyceyurt Türk, G., Akkuş, H., & Tüzün, Ü. N. (2014). Fen bilgisi öğretmen adaylarının çözünme ile ilgili imajları [Pre-service science teachers’ images about dissolution]. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 16(2), 65–84.

  • Galagovsky, L., & Adúriz-Bravo, A. (2001). Modelos y analogías en la enseñanza de las ciencias naturales: El concepto de modelo didáctico analógico [Models and analogies in science teaching: The concept of didactical analogical model]. Enseñanza de las Ciencias, 19(2), 231–242.

  • García Franco, A., & Taber, K. S. (2009). Secondary students’ thinking about familiar phenomena: Learners’ explanations from a curriculum context where ‘particles’ is a key idea for organizing teaching and learning. International Journal of Science Education, 31(14), 1917–1952. https://doi.org/10.1080/09500690802307730.

    Article  Google Scholar 

  • Gómez Crespo, M. Á., Pozo, J. I. (2004). Relationships between everyday knowledge and scientific knowledge: Understanding how matter changes. International Journal of Science Education, 26(11), 1325–1343. https://doi.org/10.1080/0950069042000205350.

  • Gott, R., Welford, G., & Foulds, K. (1988). The assessment of practical work in science. Blackwell.

    Google Scholar 

  • Guerlac, H. (1961). Lavoisier –the crucial year: The background and origin of his first experiments on combustion in 1772. Cornell University Press.

    Google Scholar 

  • Hammar, M. (2013). Teaching the gas properties and gas laws: An inquiry unit with alternative assessment. Master’s dissertation. Michigan Technological University. Retrieved on September 19, 2020 from https://digitalcommons.mtu.edu/etds/698

  • Hanson, N. R. (1958). The logic of discovery. The Journal of Philosophy, 55(25), 1073–1089. https://doi.org/10.2307/2022541.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509–534.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. van Driel (Eds.), Chemical education: Towards research-based practice. (pp. 189–212). Kluwer.

    Google Scholar 

  • Hempel, C. G. (1966). Philosophy of natural science. Prentice-Hall.

    Google Scholar 

  • Hendry, R. F. (2006). Is there downward causation in chemistry? In D. Baird, E. Scerri, & L. Mclntyre (Eds.), Philosophy of chemistry. (pp. 173–189). Springer.

    Chapter  Google Scholar 

  • Hendry, R.F. (2010). Chemistry: emergence vs. reduction. In: C. Macdonald and G. Macdonald (Eds.). Emergence in mind, pp. 205–221. Oxford: Oxford University Press.

  • Izquierdo-Aymerich, M. (2013). School chemistry: An historical and philosophical approach. Science & Education, 22(7), 1633–1653. https://doi.org/10.1007/s11191-012-9457-5.

    Article  Google Scholar 

  • Izquierdo-Aymerich, M., Sanmartí, N., & Espinet, M. (1999). Fundamentación y diseño de las prácticas escolares de ciencias experimentales [Foundations and design of school science practices]. Enseñanza de las Ciencias, 17(1), 45–59.

  • Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2009). Physical Construction of the Chemical Atom: Is it Convenient to Go All the Way Back? Science & Education, 18(3–4), 443–455.

  • Jaber, L. Z., & BouJaoude, S. (2012). A macro-submicro-symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973–998. https://doi.org/10.1080/09500693.2011.569959.

    Article  Google Scholar 

  • Johnson, P. (1998). Progression in children’s understanding of a ‘basic’ particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393–412. https://doi.org/10.1080/0950069980200402.

    Article  Google Scholar 

  • Johnson, P. (2000). Children’s understanding of substances, part I: Recognising chemical change. International Journal of Science Education, 22, 719–737.

    Article  Google Scholar 

  • Johnson, P. (2002). Children’s understanding of substances, part 2: Explaining chemical change. International Journal of Science Education, 24, 1037–1049.

    Article  Google Scholar 

  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x.

    Article  Google Scholar 

  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701–704. https://doi.org/10.1021/ed070p701.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: Some challenges in the case of ‘the atom.’ International Journal of Science Education, 22(9), 993–1009. https://doi.org/10.1080/095006900416875.

    Article  Google Scholar 

  • Karaçöp, A., & Doymuş, K. (2012). Effects of jigsaw cooperative learning and animation techniques on students’ understanding of chemical bonding and their conceptions of the particulate nature of matter. Journal of Science Education and Technology, 22(2), 186–203. https://doi.org/10.1007/s10956-012-9385-9.

    Article  Google Scholar 

  • Kjellsdotter, A. (2020). What matter(s)? A didactical analysis of primary school teachers’ ICT integration, Journal of Curriculum Studies, online. https://doi.org/10.1080/00220272.2020.1759144.

    Article  Google Scholar 

  • Koyré, A. (1966). Études d’histoire de la pensée scientifique [Studies of the history of scientific thinking]. Paris: Éditions Gallimard.

  • Kozma, R. (2003). The material features of multiples representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205–226. https://doi.org/10.1016/S0959-4752(02)00021-X.

    Article  Google Scholar 

  • Krell, M., Reinisch, B., & Krüger, D. (2015). Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education, 45(3), 367–393. https://doi.org/10.1007/s11165-014-9427-9.

    Article  Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago University Press.

    Google Scholar 

  • Landa, I., Westbroek, H., Janssen, F., van Muijlwijk, J., & Meeter, M. (2020). Scientific perspectivism in secondary-school chemistry education. Science & Education, 29(5), 1361–1388. https://doi.org/10.1007/s11191-020-00145-3.

    Article  Google Scholar 

  • Lawson, A. E. (2000). The generality of hypothetico-deductive reasoning: Making scientific thinking explicit. The American Biology Teacher, 62(7), 482–495. https://doi.org/10.2307/4450956.

    Article  Google Scholar 

  • Lawson, A. E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387–1408. https://doi.org/10.1080/0950069032000052117.

    Article  Google Scholar 

  • Lawson, A. E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry? Journal of Research in Science Teaching, 42(6), 716–740. https://doi.org/10.1002/tea.20067.

    Article  Google Scholar 

  • Lawson, A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery. Science Education, 94(2), 336–364. https://doi.org/10.1002/sce.20357.

    Article  Google Scholar 

  • Lederman, N. G., Lederman, J. S., & Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 1(3), 138–147.

    Google Scholar 

  • McComas, W. F. (1998). The principal elements of the nature of science: Dispelling the myths. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies. (pp. 41–52). Springer.

    Google Scholar 

  • McComas, W. (2005). Laboratory instruction in the service of science teaching and learning: Reinventing and reinvigorating the laboratory experience. The Science Teacher, 72(7), 24–29.

    Google Scholar 

  • Martin, D. J. (1997). Elementary science methods: A constructivist approach. Albany: Delmar.

  • Mason, E. A., & Kronstadt, B. (1967). Graham’s laws of diffusion and effusion. Journal of Chemical Education, 44(12), 740–744. https://doi.org/10.1021/ed044p740.

    Article  Google Scholar 

  • Musgrave, A.E. (2011). Popper and hypothetico-deductivism. In: D.M. Gabbay, S. Hartmann, & J. Woods (Eds.), Handbook of the history of logic. Volume 10: Inductive logic, pp. 205–234. Amsterdam: Elsevier.

  • Namdar, D., & Shen, J. (2016). Intersection of argumentation and the use of multiple representations in the context of socioscientific issues. International Journal of Science Education, 38(7), 1100–1132. https://doi.org/10.1080/09500693.2016.1183265.

    Article  Google Scholar 

  • Norris, S. P. (1985). The philosophical basis of observation in science and science education. Journal of Research in Science Teaching, 22(9), 817–833. https://doi.org/10.1002/tea.3660220905.

    Article  Google Scholar 

  • Okumuş, S., Öztürk, B., Doymuş, K., & Alyar, M. (2014). Maddenin tanecikli yapısının mikro ve makro boyutta anlaşılmasının sağlanması [Aiding comprehension of the particulate of matter at the submicro and macro levels]. Eğitim Bilimleri Araştırmaları Dergisi, 4(1), 349–368.

  • Özmen, H. (2004). Fen öğretiminde öğrenme teorileri ve teknoloji destekli yapılandırmacı (constructivist) öğrenme [Learning theories and technology-supported constructivist learning in teaching]. The Turkish Online Journal of Educational Technology, 3(1), 100–111.

  • Özmen, H. (2013). A cross-national review of the studies on the particulate nature of matter and related concepts. International Journal of Physics & Chemistry Education, 5(2), 81–110.

    Google Scholar 

  • Özmen, H., Ayas, A., & Coştu, B. (2002). Fen bilgisi öğretmen adaylarının maddenin tanecikli yapısı hakkındaki anlama seviyelerinin ve yanılgılarının belirlenmesi [Determining the level of understanding and misconceptions of science teacher candidates about the particulate structure of matter]. Kuram ve Uygulamada Eğitim Bilimleri (KUYEB), 2(2), 507–529.

  • Pauling, L. (1970). General chemistry. 3rd edition (original from 1947). San Francisco: Freeman and Co.

  • Peirce, C. S. (1957). Essays in the philosophy of science. Bobbs-Merrill.

    Google Scholar 

  • Peirce, C.S. (1982–1999). Writings of Charles S. Peirce: A chronological edition. Volumes 1–6. M.H. Fisch et al. (Eds). Bloomington: Indiana University Press.

  • Petrucci, R. H., Herring, F. G., Madura, J. D., & Bissonnette, C. (2010). General chemistry: Principles and modern applications. (10th ed.). Pearson.

    Google Scholar 

  • Pietarinen, A.-V., & Bellucci, F. (2014). New light on Peirce’s conceptions of retroduction, deduction, and scientific reasoning. International Studies in the Philosophy of Science, 28(4), 1–21. https://doi.org/10.1080/02698595.2014.979667.

    Article  Google Scholar 

  • Rothchild, I. (2006). Induction, deduction and the scientific method: An eclectic overview of the practice of science. Society for the Study of Reproduction, Inc. 13 pp. Retrieved on September 19, 2020 from https://higherlogicdownload.s3.amazonaws.com/SSR/fbd87d69-d53f-458a-8220-829febdf990b/UploadedImages/Documents/rothchild_scimethod.pdf

  • Sarıtaş, D. (2013). Rational knowledge in the process of the teaching the periodic system: Its genaration, epistemology and methodology. (Unpublished doctoral dissertation.) Gazi University, Educational Science Institute: Ankara.

  • Sarıtaş, D., Tufan, Y. (2013). İndirgemecilik Açısından Kimya Öğretiminde Makro ve Mikro Bilgi Seviyeleri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 33(2), 165–192. Retrieved from https://www.gefad.gazi.edu.tr/en/pub/issue/6732/90496.

  • Scerri, E. R. (2001). The new philosophy of chemistry and its relevance to chemical education. Chemistry Education Research and Practice, 2, 165–170. https://doi.org/10.1039/B1RP90016A.

    Article  Google Scholar 

  • Scerri, E. R. (2007). The ambiguity of reduction. Hyle International Journal for Philosophy of Chemistry, 13(2), 67.

    Google Scholar 

  • Scerri, E. R., & McIntyre, L. (1997). The case for the philosophy of chemistry. Synthese, 111(3), 213–232.

    Article  Google Scholar 

  • Schaffner, K. F. (1969). Correspondence rules. Philosophy of Science, 36(3), 280–290.

  • Schummer, J. (2004). Philosophie der Chemie: Rück- und Ausblicke. In: K. Griesar (ed.). Wenn der Geist die Materie küßt: Annäherungen an die Chemie, 12 pp. Frankfurt: Harri Deutsch.

  • Schummer, J. (2006). Philosophy of chemistry. In: D.M. Borchert (ed.). Encyclopedia of philosophy, 2nd edition, 6 pp. New York: Macmillan.

  • Scott, P., Asoko, H., Driver, R., & Emberton, J. (1994). Working from children’s ideas: planning and teaching a chemistry topic from a constructivist perspective. In P. J. Fensham, P. Gunstone, & R. White (Eds.), The content of science: A constructive approach to its teaching and learning. (pp. 201–220). The Falmer Press.

    Google Scholar 

  • Silva, L. B., Barreto, U. R., Bejarano, N. R. R., & Ribeiro, M. A. P. (2018). A filosofia da ciência e a filosofia da química: Uma perspectiva contemporânea [Philosophy of science and philosophy of chemistry: A contemporary perspective]. Revista Ideação, edição especial, 2018, 392–423. https://doi.org/10.13102/ideac.v0i0.3020.

  • Singer, F. M., & Moscovici, H. (2008). Teaching and learning cycles in a constructivist approach to instruction. Teaching and Teacher Education, 24(6), 1613–1634. https://doi.org/10.1016/j.tate.2007.12.002.

    Article  Google Scholar 

  • Sprenger, J. (2011). Hypothetico-deductive confirmation. Philosophy Compass, 6(7), 497–508. https://doi.org/10.1111/j.1747-9991.2011.00409.x.

  • Stavridou, H., & Solomonidou, C. (1998). Conceptual reorganization and the construction of the chemical reaction concept during secondary education. International Journal of Science Education, 20(2), 205–221. https://doi.org/10.1080/0950069980200206.

    Article  Google Scholar 

  • Stieff, M., Scopelitis, S., Lira, M. E., & Desutter, D. (2016). Improving representational competence with concrete models. Science Education, 100(2), 344–363. https://doi.org/10.1002/sce.21203.

    Article  Google Scholar 

  • Taber, K.S. (2002). Chemical misconceptions: Prevention, diagnosis and cure. Volume I: Theoretical background. London: Royal Society of Chemistry.

  • Taber, K. S. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156–168. https://doi.org/10.1039/C3RP00012E.

    Article  Google Scholar 

  • Taber, K. S., & Coll, R. (2002). Bonding. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, & J. H. van Driel (Eds.), Chemical education: Towards research-based practice. (pp. 213–234). Kluwer.

    Google Scholar 

  • Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry “triplet.” International Journal of Science Education, 33(2), 179–195. https://doi.org/10.1080/09500690903386435.

    Article  Google Scholar 

  • Tarkın Çelikkıran, A., & Gökçe, C. (2019). Kimya öğretmen adaylarının çözünürlük konusuna ilişkin submikroskobik seviyedeki anlama düzeylerinin çizimlerle belirlenmesi [Determination of preservice chemistry teachers’ understanding of the concept of solubility at subsubmicroscopic level by drawings]. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 46, 57–87. https://doi.org/10.9779/pauefd.457845.

  • Tan, M., & Temiz, B. K. (2003). Fen öğretiminde bilimsel süreç becerilerinin yeri ve önemi [The importance and role of science process skills in science teaching]. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13, 89–101.

  • Toulmin, S. (1998). The idol of stability. In G. B. Peterson (Ed.), The Tanner Lectures on Human Values. (Vol. 20, pp. 325–354). University of Utah Press.

    Google Scholar 

  • Tufan, Y., Sarıtaş, D. (2018). Periyodik Yasa-Sistem İlişkisi Nasıl Kurulmalıdır Kimya Öğretimine Bilim Tarihi ve Felsefesinden Çıkarımlar. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 34(1), 27–53.

  • Wisniak, J. (2013). Thomas Graham, II: Contributions to diffusion of gases and liquids, colloids, dialysis, and osmosis. Educación Química, 24, extra issue 2, 506–515. DOI: https://doi.org/10.1016/S0187-893X(13)72521-7

  • Yalçın-Çelik, A., Turan-Oluk, N., Üner, S., Ulutaş, B., & Akkuş, H. (2017). Kimya öğretmen adaylarının asitlik kavramı ile ilgili anlamalarının çizimlerle değerlendirilmesi [Evaluating chemistry preservice teachers’ concepts of acidity through drawings]. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi (KEFAD), 18, special issue, 103–124.

  • Yıldırım, C. (2016). Bilim felsefesi [Philosophy of science]. Istanbul: Remzi Kitabevi.

  • Yıldırım, N., Şengün, Y., Ceng, Z., & Ayas, A. (2010). Evaluating the effect of teaching chemical equilibrium based on analogy and laboratory on students’ achievement. Procedia Social and Behaviorial Sciences, 2(2), 537–541. https://doi.org/10.1016/j.sbspro.2010.03.059.

    Article  Google Scholar 

Download references

Funding

This work is supported by the Agencia Nacional de Promoción Científica y Tecnológica of Argentina, through Prof. Agustín Adúriz-Bravo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Adúriz-Bravo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarıtaş, D., Özcan, H. & Adúriz-Bravo, A. Observation and Inference in Chemistry Teaching: a Model-Based Approach to the Integration of the Macro and Submicro Levels. Sci & Educ 30, 1289–1314 (2021). https://doi.org/10.1007/s11191-021-00216-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-021-00216-z

Navigation