Skip to main content

Advertisement

Log in

The Nature of Scientific Practice and Science Education

Rationale of a Set of Essential Pedagogical Principles

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

There is, broadly speaking, an agreement within the international science education community that comprehension of the nature of science (NOS) should be a key element in the scientific literacy of citizens. During the last few decades, several didactic approaches have emerged concerning what and how to teach NOS. Also, one of the basic objectives of science education is for students to become familiar with the skills typical of scientific practice; however, there is little reference to their need to also acquire meta-knowledge about scientific practice (i.e., an understanding of the nature of scientific practice). Among other reasons, this may be due to NOS being essentially identified in most of the predominant proposals with the nature of scientific knowledge. But why not plan the teaching of science to be in tune with real scientific practice for students to learn about the nature of scientific practice at the same time as they are learning science? The answer to this question has given rise to a proposal grounded in ten essential pedagogical principles for the teaching and learning of science in secondary school. These are the principle of formulating questions, the principle of creativity and imagination, the principle of experimentation, the principle of procedural diversity, the principle of errors as opportunity, the principle of modeling, the principle of cooperation and teamwork, the principle of argumentation and discussion, the principle of communication, and the principle of evaluation. The purpose of this article is to present the justification and fundaments of these principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In accordance with the research done so far on understanding NOS, it is naive to think that students will learn about NOS by merely handling basic science procedures in class (there is actually evidence that this does not work by Bell, Abd-El-Khalick and others, where they compare explicit and implicit methods).

  2. The authors only presented the relationship of aspects of NOS they had implemented and evaluated within the framework of an educational research project about understanding NOS using the history of science. Obviously, more aspects could have been included, such as the role of mathematization in science, æsthetics in science, science and art, etc.

  3. It should be noted in this regard that not all sciences are experimental disciplines in a strict sense. For example, it is not possible to make direct experimental manipulations with phenomena in Astronomy or Earth Sciences (Acevedo 2018; Irzik and Nola 2011).

  4. It is what is known in Vygotsky’s terminology as the Zone of Proximal Development.

References

  • Abd-El-Khalick, F. (2012). Nature of science in science education: Toward a coherent framework for synergistic research and development. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 1041–1060). Dordrecht: Springer.

    Google Scholar 

  • Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107.

    Google Scholar 

  • Acevedo, J. A. (2006a). Modelos de relaciones entre ciencia y tecnología: Un análisis social e histórico. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 3(2), 198–219.

    Google Scholar 

  • Acevedo, J. A. (2006b). Relevancia de los factores no-epistémicos en la percepción pública de los asuntos tecnocientíficos. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 3(3), 369–390.

    Google Scholar 

  • Acevedo, J. A. (2009). Enfoques explícitos versus implícitos en la enseñanza de la naturaleza de la ciencia. Revista Eureka sobre Enseñanza y Divulgación de las. Ciencias, 6(3), 355–386.

    Google Scholar 

  • Acevedo-Díaz, J. A. (2018). ¿Naturaleza de la ciencia o naturaleza de las ciencias? OEI, Divulgación y Cultura Científica Iberoamericana. Retrieved from http://www.oei.es/historico/divulgacioncientifica/?Naturaleza-de-la-ciencia-o-naturaleza-de-las-ciencias

  • Acevedo, J. A., & García-Carmona, A. (2016). «Algo antiguo, algo nuevo, algo prestado». Tendencias sobre la naturaleza de la ciencia en la educación científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(1), 3–19.

    Google Scholar 

  • Acevedo-Díaz, J. A., & García-Carmona, A. (2017). Controversias en la historia de la ciencia y cultura científica. Madrid: Los Libros de la Catarata.

    Google Scholar 

  • Acevedo-Díaz, J. A., García-Carmona, A. & Aragón, M. M. (2017a). Enseñar y aprender sobre naturaleza de la ciencia mediante el análisis de controversias de historia de la ciencia. Resultados y conclusiones de un proyecto de investigación didáctica. Madrid: Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura (OEI).

  • Acevedo-Díaz, J. A., García-Carmona, A., Aragón-Méndez, M. M., & Oliva-Martínez, J. M. (2017b). Modelos científicos: Significado y papel en la práctica científica. Revista Científica, 30(3), 155–166.

    Google Scholar 

  • Adúriz-Bravo, A. (2014). Revisiting school scientific argumentation from the perspective of the history and philosophy of science. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1443–1472). Dordrecht: Springer.

    Google Scholar 

  • Adúriz-Bravo, A., & Ariza, Y. (2014). Una caracterización semanticista de los modelos científicos para la ciencia escolar. Bio-grafía, 7(13), 25–34.

    Google Scholar 

  • Akerson, V. L., & Abd-El-Khalick, F. (2003). Teaching elements of nature of science: A yearlong case study of a fourth-grade teacher. Journal of Research in Science Teaching, 40(10), 1025–1049.

    Google Scholar 

  • Allchin, D. (2004). Error and the nature of science. American Institute of Biological Sciences. Retrieved from http://www.actionbioscience.org/education/allchin2.html.

  • Allchin, D. (2012). Teaching the nature of science through scientific errors. Science Education, 96(5), 904–926.

    Google Scholar 

  • Aragón, M. M., Oliva, J. M., & Navarrete, A. (2014). Contributions of learning through analogies to the construction of secondary education pupils’ verbal discourse about chemical change. International Journal of Science Education, 36(12), 1960–1984.

    Google Scholar 

  • Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—What kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749.

    Google Scholar 

  • Asikainen, M. A., & Hirvonen, P. E. (2014). Thought experiments in science and in science education. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1235–1256). Dordrecht: Springer.

    Google Scholar 

  • Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.

    Google Scholar 

  • Banet, E. (2010). Finalidades de la educación científica en educación secundaria: Aportaciones de la investigación educativa y opinión de los profesores. Enseñanza de las Ciencias, 28(2), 199–214.

    Google Scholar 

  • Bell, R. (2009). Teaching the nature of science: Three critical questions. In Best Practices in Science Education. Carmel, CA: National Geographic School Publishing.

  • Bell, R. L., Mulvey, B. K., & Maeng, J. L. (2012). Beyond understanding: Process skills as a context for nature of science instruction. In M. S. Khine (Ed.), Advances in nature of science research (pp. 225–245). Dordrecht: Springer.

    Google Scholar 

  • Bertsch, C., Kapelari, S., & Unterbruner, U. (2014). From cookbook experiments to inquiry based primary science: Influence of inquiry based lessons on interest and conceptual understanding. Inquiry in Primary Science Education, 1, 20–31.

    Google Scholar 

  • Bunterm, T., Lee, K., Lan, J. N., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937–1959.

    Google Scholar 

  • Cañal, P., García-Carmona, A., & Cruz-Guzmán, M. (2016). Didáctica de las ciencias experimentales en educación primaria. Madrid: Paraninfo.

    Google Scholar 

  • Clough, M. P. (2011). Teaching and assessing the nature of science. The Science Teacher, 78(6), 56–60.

    Google Scholar 

  • Cruz-Guzmán, M., García-Carmona, A., & Criado, A. M. (2017). An analysis of the questions proposed by elementary pre-service teachers when designing experimental activities as inquiry. International Journal of Science Education, 39(13), 1755–1774.

    Google Scholar 

  • Chin, C., & Osborne, J. (2008). Students’ questions: A potential resource for teaching and learning science. Studies in Science Education, 44(1), 1–39.

    Google Scholar 

  • Dagher, Z. R., & Erduran, S. (2016). Reconceptualizing the nature of science for science education. Why does it matter? Science & Education, 25(1–2), 147–164.

    Google Scholar 

  • Domin, D. S. (2009). Considering laboratory instruction through Kuhn’s view of the nature of science. Journal of Chemical Education, 86(3), 274–276.

    Google Scholar 

  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young People’s Images of Science. Buckingham: Open University Press.

    Google Scholar 

  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.

    Google Scholar 

  • Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34(15), 2289–2315.

    Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education. Perspectives from classroom-based research. Dordrecht: Springer.

    Google Scholar 

  • Forato, T. C. M., Martins, R. A., & Pietrocola, M. A. (2011). Historiografia e natureza da ciência na sala de aula. Caderno Brasileiro de Ensino de Física, 28(1), 27–59.

    Google Scholar 

  • Gale, S. (1978). A prolegomenon to an interrogative theory of scientific inquiry. In H. Hiz (Ed.), Questions (pp. 319–345). Dordrecht: Springer.

    Google Scholar 

  • García-Carmona, A. (2008). Relaciones CTS en la educación científica básica II. Investigando los problemas del mundo. Enseñanza de las. Ciencias, 26(3), 389–402.

    Google Scholar 

  • García-Carmona, A. (2012a). Cómo enseñar Naturaleza de la Ciencia (NDC) a través de experiencias escolares de investigación científica. Alambique, 72, 55–63.

    Google Scholar 

  • García-Carmona, A. (2012b). “¿Qué he comprendido? ¿qué sigo sin entender?”. Promoviendo la auto-reflexión en clase de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(2), 231–240.

    Google Scholar 

  • García-Carmona, A. (2014). Naturaleza de la ciencia en noticias científicas de la prensa: Análisis del contenido y potencialidades didácticas. Enseñanza de las Ciencias, 32(3), 493–509.

    Google Scholar 

  • García-Carmona, A., & Acevedo, J. A. (2016). Learning about the nature of science using newspaper articles with scientific content: A study in initial primary teacher education. Science & Education, 25(5–6), 523–546.

    Google Scholar 

  • García-Carmona, A., & Acevedo-Díaz, J. A. (2017). Understanding the nature of science through a critical and reflective analysis of the controversy between Pasteur and Liebig on fermentation. Science & Education, 26(1), 65–91. https://doi.org/10.1007/s11191-017-9876-4.

  • García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2017). Primary pre-service teachers’ skills in planning a guided scientific inquiry. Research in Science Education, 47(5), 989–1010.

    Google Scholar 

  • García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2018). Prospective primary teachers’ prior experiences, conceptions, and pedagogical valuations of experimental activities in science education. International Journal of Science and Mathematics Education, 16(2), 237–253.

    Google Scholar 

  • García-Carmona, A., Vázquez, A., & Manassero, M. A. (2011). Estado actual y perspectivas de la enseñanza de la naturaleza de la ciencia: una revisión de las creencias y obstáculos del profesorado. Enseñanza de las Ciencias, 29(3), 403–412.

    Google Scholar 

  • García-Carmona, A., Vázquez, A., & Manassero, M. A. (2012). Comprensión de los estudiantes sobre naturaleza de la ciencia: un análisis del estado actual de la cuestión y perspectivas. Enseñanza de las Ciencias, 30(1), 23–34.

    Google Scholar 

  • Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742–752.

    Google Scholar 

  • Gil, D. (1994). Relaciones entre conocimiento escolar y conocimiento científico. Investigación en la Escuela, 23, 17–32.

    Google Scholar 

  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10(1), 61–98.

    Google Scholar 

  • Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Dordrecht: Springer.

    Google Scholar 

  • Gouvea, J., & Passmore, C. (2017). Models of’ versus ‘models for’. Science & Education, 26(1–2), 49–63.

    Google Scholar 

  • Graesser, A. C., Ozuru, Y., & Sullins, J. (2010). What is a good question? In M. G. McKeown & L. Kucan (Eds.), Bringing reading research to life (pp. 112–141). New York, NY: The Guildford Press.

    Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822.

    Google Scholar 

  • Harlen, W. (2012). Inquiry in science education. In S. Borda (coord.), Resources for implementing inquiry in science and mathematics at school. Retrieved from http://fibonacci.uni-bayreuth.de/resources/resources-for-implementing-inquiry.html

  • Harlen, W. (2013). Assessment & inquiry-based science education: Issues in policy and practice. Trieste: IAP.

    Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (1998). Modelling in science lessons: Are there better ways to learn with models? School Science and Mathematics, 98(8), 420–429.

    Google Scholar 

  • Hayes, D. (2009). Encyclopedia of primary education. New York, NY: Routledge.

    Google Scholar 

  • Hein, G. E. (1961). The Liebig-Pasteur controversy: Vitality without vitalism. Journal of Chemical Education, 38(12), 614–619.

    Google Scholar 

  • Hempel, C. G. (1966). Philosophy of natural science. Oxford: Prentice-Hall.

    Google Scholar 

  • Hodson, D. (1988). Experiments in science and science teaching. Educational Philosophy and Theory, 20(2), 53–66.

    Google Scholar 

  • Hodson, D. (2005). Teaching and learning chemistry in the laboratory: A critical look at the research. Educación Química, 16(1), 30–38.

    Google Scholar 

  • Hodson, D. (2008). Towards scientific literacy: A teachers’ guide to the history, philosophy and sociology of science. Rotterdam: Sense Publishers.

    Google Scholar 

  • Hodson, D. (2014). Nature of science in the science curriculum: Origin, development, implications and shifting emphases. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 911–970). Dordrecht: Springer.

    Google Scholar 

  • Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389–403.

    Google Scholar 

  • Huang, T.-Y., Wu, H.-L., She, H.-C., & Lin, Y.-R. (2014). Enhancing students’ NOS views and science knowledge using Facebook-based scientific news. Educational Technology & Society, 17(4), 289–301.

    Google Scholar 

  • Hull, L. W. H. (1959). History and philosophy of science. New York: Longmans, Green.

    Google Scholar 

  • Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science Education, 84(1), 5–26.

    Google Scholar 

  • Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science. Science & Education, 20(7–8), 591–607.

    Google Scholar 

  • Irzik, G., & Nola, R. (2014). New directions for nature of science research. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 999–1021). Dordrecht: Springer.

  • Jarman, R., & McClune, B. (2007). Developing scientific literacy using news media in the classroom. New York, NY: Open University Press.

    Google Scholar 

  • Justi, R. (2006). La enseñanza de las ciencias basada en modelos. Enseñanza de las Ciencias, 24(2), 173–184.

    Google Scholar 

  • Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.

    Google Scholar 

  • Khishfe, R. (2014). Explicit nature of science and argumentation instruction in the context of socioscientific issues: An effect on student learning and transfer. International Journal of Science Education, 36(6), 974–1016.

    Google Scholar 

  • Kind, P. M., & Kind, V. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43(1), 1–37.

    Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Google Scholar 

  • Klucevsek, K. M., & Brungard, A. B. (2016). Information literacy in science writing: How students find, identify, and use scientific literature. International Journal of Science Education, 38(17), 2573–2595.

    Google Scholar 

  • Koksal, E. A., & Berberoglu, G. (2014). The effect of guided-inquiry instruction on 6th grade Turkish students’ achievement, science process skills and attitudes toward science. International Journal of Science Education, 36(1), 66–78.

    Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1978). The methodology of scientific research programmes. Philosophical papers (Vol. Volume 1). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Laherto, A. M. P., Kampschulte, L., de Vocht, M., Blonder, R., Akaygün, S., & Apotheker, J. (2018). Contextualizing the EU's “responsible research and innovation” policy in science education. Eurasia Journal of Mathematics, Science & Technology Education, 14(6), 2287–2300.

    Google Scholar 

  • Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Towards valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.

    Google Scholar 

  • Lederman, N. G., Antink, A., & Bartos, S. (2014a). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, 23(2), 285–302.

    Google Scholar 

  • Lederman, N., & Lederman, J. (2012). Nature of scientific knowledge and scientific inquiry: Building instructional capacity through professional development. In B. J. Fraser et al. (Eds.), Second international handbook of science education (pp. 335–359). Chicago, IL: Springer.

    Google Scholar 

  • Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014b). Meaningful assessment of learners’ understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65–83.

    Google Scholar 

  • Leung, J. S. C., Wong, A. S. L., & Yung, B. H. W. (2015). Understandings of nature of science and multiple perspective evaluation of science news by non-science majors. Science & Education, 24(7–8), 887–912.

    Google Scholar 

  • Liu, S. C., & Lin, H. S. (2014). Primary teachers’ beliefs about scientific creativity in the classroom context. International Journal of Science Education, 36(10), 1551–1567.

    Google Scholar 

  • Longshaw, S. (2009). Creativity in science teaching. School Science Review, 90(332), 91–94.

    Google Scholar 

  • Lunetta, V. N., Hofstein, A., & Clough, M. (2007). Learning and reaching in the school laboratory: An analysis of research, theory, and practice. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (pp. 393–441). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Marín, N. (2003). Conocimientos que interaccionan en la enseñanza de las ciencias. Enseñanza de las Ciencias, 21(1), 65–78.

    Google Scholar 

  • Martins, A. F. P. (2015). Natureza da Ciência no ensino de ciências: Uma proposta baseada em “temas” e “questões”. Caderno Brasileiro de Ensino de Física, 32(3), 703–737.

    Google Scholar 

  • Matthews, M. R. (2012). Changing the focus: From nature of science (NOS) to features of science (FOS). In E. M. S. Khine (Ed.), Advances in Nature of Science Research (pp. 3–26). Dordrecht: Springer.

    Google Scholar 

  • Matthews, M. R. (2017). Book review—Reconceptualizing the nature of science for science education. Studies in Science Education, 53(1), 105–107.

    Google Scholar 

  • McComas, W. F. (1998). The principal elements of the nature of science: Dispelling the myths. In W. F. McComas (Ed.), The nature of science in science education (pp. 53–70). Los Angeles, CA: Kluwer.

    Google Scholar 

  • McComas, W. F., & Olson, J. K. (1998). The nature of science in international science education standards documents. In W. F. McComas (Ed.), The nature of science in science education (pp. 41–52). Los Angeles, CA: Kluwer.

    Google Scholar 

  • McDonald, C. V. (2017). Exploring nature of science and argumentation in science education. In B. Akpan (Ed.), Science education: A global perspective (pp. 7–43). Dordrecht: Springer.

    Google Scholar 

  • McMullin, E. (1987). Scientific controversy and its termination. In H. T. Engelhardt Jr. & A. L. Caplan (Eds.), Scientific controversies. Case studies in the resolution and closure of disputes in science and technology (pp. 49–91). New York, NY: Cambridge University Press.

    Google Scholar 

  • Michel, H., & Neumann, I. (2016). Nature of science and science content learning. Science & Education, 25(9–10), 951–975.

    Google Scholar 

  • Millar, R. (2010). Practical works. In J. Osborne & J. Dillon (Eds.), Good practice in science teaching. What research has to say (pp. 108–134). New York, NY: Open University Press.

    Google Scholar 

  • Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 10–37). Cambridge: Cambridge University Press.

    Google Scholar 

  • NGSS Lead States. (2013). The next generation science standards: For states, by states. Washington, DC: National Academy of Sciences Press.

    Google Scholar 

  • Nielsen, K. H. (2013). Scientific communication and the nature of science. Science & Education, 22(9), 2067–2086.

    Google Scholar 

  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109–1130.

    Google Scholar 

  • Oliva, J. M., Azcárate, P., & Navarrete, A. (2007). Teaching models in the use of analogies as a resource in the science classroom. International Journal of Science Education, 29(1), 45–66.

    Google Scholar 

  • Organisation for Economic Co-operation and Development [OECD]. (2016). PISA 2015 Assessment and analytical framework: Science, reading, Mathematic and financial literacy. Paris: OECD Publishing.

    Google Scholar 

  • Osborne, J. (2014). Scientific practices and inquiry in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 579–599). New York, NY: Routledge.

    Google Scholar 

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.

    Google Scholar 

  • Pozo, J. I., & Gómez Crespo, M. A. (1998). Aprender y enseñar ciencia. Madrid: Morata.

    Google Scholar 

  • Reif, F., & Larkin, J. (1991). Cognition in scientific and everyday domains: Comparison and learning implications. Journal of Research in Science Teaching, 28, 733–760.

    Google Scholar 

  • Roca, M., Márquez, C., & Sanmartí, N. (2013). Las preguntas de los alumnos: Una propuesta de análisis. Enseñanza de las Ciencias, 31(1), 95–114.

    Google Scholar 

  • Rönnebeck, S., Bernholt, S., & Ropohl, M. (2016). Searching for a common ground—a literature review of empirical research on scientific inquiry activities. Studies in Science Education, 52(2), 161–197.

    Google Scholar 

  • Rudge, D. W., Cassidy, D. P., Fulford, J. M., & Howe, E. M. (2014). Changes observed in views of nature of science during a historically based unit. Science & Education, 23(9), 1879–1909.

    Google Scholar 

  • Salmerón, L. (2013). Actividades que promueven la transferencia de los aprendizajes: una revisión de la literatura. Revista de Educación, No. Extra., 34–53.

  • Sanmartí, N., & Márquez, C. (2012). Enseñar a plantear preguntas investigables. Alambique, 70, 27–36.

    Google Scholar 

  • Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36(1–2), 111–139.

    Google Scholar 

  • Schwartz, R. S., & Crawford, B. A. (2006). Authentic scientific inquiry as context for teaching nature of science. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp. 331–355). Dordrecht: Springer.

    Google Scholar 

  • Shamos, M. H. (1995). The myth of scientific literacy. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Shibley, I. A. (2003). Using newspapers to examine the nature of science. Science & Education, 12(7), 691–702.

    Google Scholar 

  • Spektor-Levy, O., Eylon, B. S., & Scherz, Z. (2009). Teaching scientific communication skills in science studies: Does it make a difference? International Journal of Science and Mathematics Education, 7(5), 875–903.

    Google Scholar 

  • Vale, R. D. (2013). The value of asking questions. Molecular Biology of the Cell, 24(6), 680–682.

    Google Scholar 

  • Vygotsky, L. (1985). Pensamiento y Lenguaje. Buenos Aires: Pléyade.

    Google Scholar 

  • Weinberg, S. (2015). To explain the world: The discovery of modern science. London: Penguin.

    Google Scholar 

  • Wong, S. L., & Hodson, D. (2009). From the horse’s mouth: What scientists say about scientific investigation and scientific knowledge. Science Education, 93(1), 109–130.

    Google Scholar 

  • Zachos, P., Pruzek, R. & Hick, T. (2003). Approaching error in scientific knowledge and science education. In 7th International History, Philosophy of Science and Science Teaching Conference Proceedings (pp. 947–957). Winnipeg: IHPST Group.

Download references

Acknowledgements

This study was supported by the Ministry of Economy, Industry and Competitiveness (Spain) under grant EDU2017-82505-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio García-Carmona.

Ethics declarations

Conflict of Interest

The authors declared that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Carmona, A., Acevedo-Díaz, J.A. The Nature of Scientific Practice and Science Education. Sci & Educ 27, 435–455 (2018). https://doi.org/10.1007/s11191-018-9984-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-018-9984-9

Keywords

Navigation