Skip to main content
Log in

The Influence of Helical Rolling and Controlled Cooling on Impact Toughness of Ti-6Al-3Mo Titanium Alloy

  • Published:
Russian Physics Journal Aims and scope

The paper studies the evolution of the structure, phase composition, and impact toughness of the Ti-6Al-3Mo titanium alloy after two types of processing. Mode I consists of heating and hot helical rolling, followed by quenching into water. In mode II, an additional air quenching is used between the rolling and quenching processes. This approach, combining two alloy cooling stages (in air and in water), makes it possible to control the recrystallization time and form a gradient structure over the cross-section of the bar stock. The processing of titanium alloy according to mode I leads to a decrease of the impact strength. An addition of an air-cooling stage (in mode II) leads to an insignificant decrease in the hardness and an increase of the alloy toughness. The treatment of the titanium alloy by modes I and II results in the formation of a structure containing large grains of the primary α-phase in a thin-plate structure of the secondary α-phase in the β-phase. It is shown that these structural states of the alloy affect the crack propagation under impact loading and change the amount of the energy spent on the complete failure of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Ren, Y. J. Liu, H. B. Zhang, et al., Rare Metal Mater. Eng., 49, No. 3 (2020).

  2. Z. Y. Li, G. Q. Wu, and Z. Huang, Mater. Res. Express., 5, No. 3 (2018). https://doi.org/10.1088/2053-1591/aab39e.

  3. F. Li, B. Qi, Y. Zhang, et al., Metals, 11, No. 2, 346 (2021). https://doi.org/10.3390/met11020346.

    Article  Google Scholar 

  4. R. Julien, V. Velay, V. Vidal, et al., Mater. Lett., 208, 7 (2017). https://doi.org/10.1016/j.matlet.2017.05.050.

    Article  Google Scholar 

  5. L. Wanying, L. Yuanhua, C. Yuhai, et al., Rare Metal Mater. Eng., 46, No. 3, 634 (2017). https://doi.org/10.1016/S1875-5372(17)30109-1.

    Article  Google Scholar 

  6. S. P. Belov, M. Ya. Brun, and S. G. Glazunov, Metallography of Titanium and its Alloys [in Russian] (Exec. Eds. S. G. Glazunov and B. A. Kolachev), Metallurgiya, Moscow (1992).

  7. X. Yang, Z. Zhao, Y. Ning, and H. Guo, Mater. Sci. Eng. A, 745, 240 (2019). https://doi.org/10.1016/j.msea.2018.12.046.

    Article  Google Scholar 

  8. L. E. Popova and A. A. Popov, Austenite Transformation Diagrams in Steels and Beta-solutions in Titanium Alloys: A heat-treater reference book [in Russian], Metallurgiya, Moscow (1991).

  9. H. Shao, Y. Zhao, P. Ge, and W. Zeng, Mater. Sci. Eng. A, 586, 215 (2013). https://doi.org/10.1016/j.msea.2013.08.012.

    Article  Google Scholar 

  10. S. L. Semiatin, S. L. Knisley, P. N. Fagin, et al., Metall. Mater. Trans. A, 34, No. 10, 2377 (2003). https://doi.org/10.1007/s11661-003-0300-0.

    Article  Google Scholar 

  11. S. L. Semiatin, T. M. Lehner, J. D. Miller, et al., Metall. Mater. Trans. A, 38, 910 (2007). https://doi.org/10.1007/s11661-007-9088-7.

    Article  Google Scholar 

  12. N. Pushilina, E. Stepanova, A. Stepanov, and M. Syrtanov, Metals, 11, No. 3, 512 (2021). https://doi.org/10.3390/met11030512.

    Article  Google Scholar 

  13. A. Bahador, J. Umeda, and H. Ghandvar, Mater. Charact., 172, 110855 (2021). https://doi.org/10.1016/j.matchar.2020.110855.

    Article  Google Scholar 

  14. A. Ebuzer, S. Yalcinkaya, and Y. Sahin, Mater. Res. Express., 7, No. 3, 035402 (2020). https://doi.org/10.1088/2053-1591/ab7c88.

    Article  ADS  Google Scholar 

  15. D. Wojtas and K. Wierzbanowski, J. Alloys Compd. 837, 155576 (2020). https://doi.org/10.1016/j.jallcom.2020.155576.

    Article  Google Scholar 

  16. Yu. R. Kolobov, Russ. Phys. J., 61, No. 4, 611 (2018). URL: https://www. elibrary.ru/item.asp?id=32836577.

  17. S. V. Razorenov, G. V. Garkushin, A. S. Savinykh, et al., Fizich. Mezomekh., 24, No. 3, 17 (2021).

    Google Scholar 

  18. J. Xu, W. Zeng, X. Sun, and Z. Jia, J. Alloys Compd., 637, 449 (2015). https://doi.org/10.1016/j.jallcom.2015.03.042.

    Article  Google Scholar 

  19. G. Chi, H. Liu, and D. Yi, Mater. Lett., 284, 128925 (2021). https://doi.org/10.1016/j.matlet.2020.128925.

    Article  Google Scholar 

  20. Y. Chong, T. Bhattacharjee, Y. Tian, et al., J. Mater. Sci. Technol., 71, 138 (2021). https://doi.org/10.1016/j.jmst.2020.08.057.

    Article  Google Scholar 

  21. E. V. Naydenkin, I. P. Mishin, I. V. Ratochka, et al., Mater. Sci. Eng. A, 810, 140968 (2021). https://doi.org/10.1016/j.msea.2021.140968.

    Article  Google Scholar 

  22. M. Motyka, J. Sieniawski, and W. Ziaja, Archives of Metallurgy and Materials, 60, 2033 (2015). https://doi.org/10.1515/amm-2015-0345.

    Article  Google Scholar 

  23. X. Zhu, Q. Fan, X. Liu, et al., Prog. Natural Sci.: Mater. Int., 31, No. 1, 105 (2021). https://doi.org/10.1016/j.pnsc.2020.11.007.

    Article  Google Scholar 

  24. R. Dong, J. Li, H. Kou, et al., Mater. Charact., 129, 135 (2017). https://doi.org/10.1016/j.matchar.2017.04.031.

    Article  Google Scholar 

  25. J. Xu, W. Zeng, Y. Zhao, and Z. Jia, Mater. Sci. Eng. A, 676, 434 (2016). https://doi.org/10.1016/j.msea.2016.09.017.

    Article  Google Scholar 

  26. B. A. Kolachev, Yu. B. Egorova, and S. B. Belova, Metal Science and Heat Treatment, 50, No. 7, 367 (2008). https://doi.org/10.1007/s11041-008-9061-0.

    Article  ADS  Google Scholar 

  27. Z. Zhao, J. Chen, H. Tan, et al., Scripta Mater., 146, 187 (2018). – https://doi.org/10.1016/j.scriptamat.2017.11.021.

    Article  Google Scholar 

  28. M. Motyka, K. Kubiak, J. Sieniawski, and W. Ziaja, Comprehensive Materials Processing, 2, 7 (2014). https://doi.org/10.1016/B978-0-08-096532-1.00202-8.

    Article  Google Scholar 

  29. G. Chi, D. Yi, B. Jiang, et al., J. Alloys Compd., 852, No. 25, 156581 (2021). https://doi.org/10.1016/j.jallcom.2020.156581.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Vlasov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 22–28, May, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, I.V., Gomorova, J.F., Yakovlev, A.V. et al. The Influence of Helical Rolling and Controlled Cooling on Impact Toughness of Ti-6Al-3Mo Titanium Alloy. Russ Phys J 65, 786–793 (2022). https://doi.org/10.1007/s11182-022-02698-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02698-y

Keywords

Navigation