Skip to main content
Log in

The Pauli Exclusion Principle and the Problems of its Theoretical Substantiation1

  • Published:
Russian Physics Journal Aims and scope

The modern state of the Pauli Exclusion Principle (PEP) is discussed. PEP can be considered from two viewpoints. On the one hand, it asserts that particles with half-integer spin (fermions) are described by antisymmetric wave functions, and particles with integer spin (bosons) are described by symmetric wave functions. This is the so-called spin-statistics connection (SSC). As we will discuss, the physical reasons why SSC exists are still unknown. On the other hand, according to PEP, the permutation symmetry of the total wave functions can be only of two types: symmetric or antisymmetric, both belong to one-dimensional representations of the permutation group, all other types of permutation symmetry are forbidden; whereas the solution of the Schrödinger equation may have any permutation symmetry. It is demonstrated that the proof in some textbooks on quantum mechanics that only symmetric and antisymmetric states can exist is wrong. However, the scenarios, in which arbitrary permutation symmetry (degenerate permutation states) is permitted, lead to contradictions with the concepts of particle identity and their independence. Thus, the existence in our Nature of particles only in nondegenerate permutation states (symmetric and antisymmetric) is not accidental and so-called symmetrization postulate should not be considered as a postulate, since all other symmetry options for the total wave function may not be realized. From this an important conclusion follows: we may not expect that in the future some unknown elementary particles can be discovered that are not fermions or bosons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heisenberg, Zs. Phys., 33, 879 (1925).

    ADS  Google Scholar 

  2. M. Born and P. Jordan, Zs. Phys., 34, 858 (1925).

    ADS  Google Scholar 

  3. L. de Broglie, Ann. der Phys., 3, 22 (1925).

    Google Scholar 

  4. E. Schrödinger, Ann. der Phys., 79, 361, 489, 734 (1926).

  5. E. Schrödinger, Phys. Rev., 28, 1049 (1926).

    ADS  Google Scholar 

  6. W. Pauli, Zs. Phys., 31, 373 (1925).

    ADS  Google Scholar 

  7. W. Pauli, Zs. Phys., 31, 765 (1925).

    ADS  Google Scholar 

  8. W. Pauli, Nobel Lecture, in Nobel Lectures, Physics, 1942-1962, Elsevier, Amsterdam, (1964).

    Google Scholar 

  9. I. G. Kaplan, The Pauli Exclusion Principle: Origin, Verifications and Applications, Wiley, Chichester, (2017).

    MATH  Google Scholar 

  10. W. Heisenberg, Zs. Phys., 38, 411 (1926).

    ADS  Google Scholar 

  11. P. A. M. Dirac, Proc. Roy. Soc. Lond. A, 112, 621 (1926).

    ADS  Google Scholar 

  12. J. C. Slater, Phys. Rev., 34, 1293 (1929).

    ADS  Google Scholar 

  13. R. H. Fowler, Monthly Notices of the Royal Astronomical Society 87, 114 (1926).

    ADS  Google Scholar 

  14. P. A. M. Dirac, Proc. Roy. Soc. Lond. A 117, 610 (1928); Part II, A 118, 351 (1928).

  15. E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl., 24, 418 (1930).

  16. A. O. Barut and A. J. Bracken, Phys. Rev. D, 23, 2454 (1981); 24, 3333 (1981).

  17. O. Barut and N. Zanghi, Phys. Rev. Lett., 52, 2009 (1984).

    ADS  MathSciNet  Google Scholar 

  18. K. Huang, Am. J. Phys., 20, 479 (1952).

    ADS  Google Scholar 

  19. S. M. Moor and J.A. Ramirez, Lett. Nuovo Cim., 3, 87 (1982).

    Google Scholar 

  20. J. Cavalleri, Lett. Nuovo Cim., 43, 285 (1985).

    MathSciNet  Google Scholar 

  21. D. Hestenes, Found. Phys., 40, 1 (2010).

    ADS  MathSciNet  Google Scholar 

  22. J. Chadwick, Nature. 129, 312 (1932).

    ADS  Google Scholar 

  23. W. Heisenberg, Zs. Phys., 77, 1 (1932).

    ADS  Google Scholar 

  24. E. Wigner, Phys. Rev., 51, 106 (1937).

    ADS  Google Scholar 

  25. P. Ehrenfest and J.R. Oppenheimer, Phys. Rev., 37 333 (1931).

    ADS  Google Scholar 

  26. M. Born and J.R. Oppenheimer, Ann. Phys. (Leipzig), 84, 457 (1927).

  27. H. G. Dieke and H.D. Babcock, Proc. Natl. Acad. Sci. U. S. A., 13, 670 (1927).

    ADS  Google Scholar 

  28. W. Pauli, Phys. Rev., 58, 716 (1940).

    ADS  Google Scholar 

  29. H. S. Green, Phys. Rev., 90, 270 (1953).

    ADS  MathSciNet  Google Scholar 

  30. D. V. Volkov, Sov. Phys. JETF, 9, 1107 (1959).

    Google Scholar 

  31. O. W. Greenberg and A.M. Messiah, Phys. Rev. 138, B1155 (1965).

    ADS  Google Scholar 

  32. Y. Ohnuki and S. Kamefuchi, Quantum Field Theory and Parastatistics, Springer, Berlin (1982).

    MATH  Google Scholar 

  33. I. G. Kaplan, Theor. Math. Phys., 27, 254 (1976).

    Google Scholar 

  34. A. N. Avdyugin, Yu. D Zavorotnev, and L.N. Ovander, Sov. Phys. Solid State, 25, 1437 (1983).

    Google Scholar 

  35. B. A. Nguyen, J. Phys. C : Solid State Phys., 21, L1209 (1988).

    Google Scholar 

  36. D. I. Pushkarov. Phys. Status Solidi b, 133, 525 (1986).

    ADS  Google Scholar 

  37. I.G. Kaplan and O. Navarro, J. Phys.: Condens. Matter 11, 6187 (1999).

    ADS  Google Scholar 

  38. A. Nguyen and N.C. Hoang. J. Phys.: Condens. Matter 2, 4127 (1990).

    ADS  Google Scholar 

  39. I. G. Kaplan and O. Navarro. Physica C, 341-348, 217 (2000).

  40. F. Dyson, Phys. Rev. 102, 1217 (1956).

    ADS  MathSciNet  Google Scholar 

  41. W. Pauli, Prog. Theor. Phys. 5, 526 (1950).

    ADS  Google Scholar 

  42. R. P. Feynman, Phys. Rev. 76, 749 (1949).

    ADS  Google Scholar 

  43. J. Schwinger, Phys. Rev. 74, 1939 (1948).

    ADS  Google Scholar 

  44. I. Duck and E.C.G. Sudarshan, Pauli and the Spin-Statistics Theorem, World Scientific, Singapore (1997).

    MATH  Google Scholar 

  45. I. Duck, E.C.G. Sudarshan, Am. J. Phys. 66, 284 (1998).

    ADS  Google Scholar 

  46. A. S. Wightman, Am. J. Phys. 67, 742 (1999).

    ADS  Google Scholar 

  47. In Feynman Lectures on Physics, Vol. III, R. P. Feynman, R. B. Leighton and Sands, Addison-Wesley, Reading (1965).

  48. A. Jabs, Found. Phys. 40, 776 (2010).

    ADS  MathSciNet  Google Scholar 

  49. A. F. Bennett, Found. Phys. 45, 370 (2015).

    ADS  MathSciNet  Google Scholar 

  50. F. De Martini, E. Santamato, Int. J. Quantum Inf. 12, 1560004 (2014).

    MathSciNet  Google Scholar 

  51. E. Santamato, F. De Martini, Found. Phys. 45, 858 (2015).

    ADS  MathSciNet  Google Scholar 

  52. E. Santamato, F. De Martini, Found. Phys. 47, 1609 (2017).

    ADS  MathSciNet  Google Scholar 

  53. P. A. M Dirac, The Principles of Quantum Mechanics, Clarendon Press, Oxford (1958).

  54. L. I. Schiff, Quantum Mechanics, Mc Graw-Hill, New York (1955).

    MATH  Google Scholar 

  55. A. M. Messiah, Quantum Mechanics, North-Holland, Amsterdam (1962).

    MATH  Google Scholar 

  56. A. M. Messiah, O.W. Greenberg, Phys. Rev. 136, B248 (1964).

    ADS  Google Scholar 

  57. W. Pauli, Science, 103, 213 (1946).

    ADS  Google Scholar 

  58. M. D. Girardeau, Phys. Rev. 139, B500 (1965).

    ADS  MathSciNet  Google Scholar 

  59. E. M. Corson, Perturbation Methods in Quantum Mechanics of Electron Systems, University Press, Glasgow (1951).

    MATH  Google Scholar 

  60. L. D. Landau, E.M. Lifschitz, Quantum Mechanics (Nonrelativistic Theory), 3rd edn., Pergamon Press, Oxford (1977).

    Google Scholar 

  61. D. I. Blokhintzev, Principles of Quantum Mechanics, Allyn and Bacon, Boston, MA (1964).

    Google Scholar 

  62. I. G. Kaplan, Sov. Phys. Uspekhi 18, 988 (1976).

    ADS  Google Scholar 

  63. I. G. Kaplan, Int. J. Quant. Chem. 89, 268 (2002).

    Google Scholar 

  64. I. G. Kaplan, Found. Phys. 43, 1233 (2013).

    ADS  MathSciNet  Google Scholar 

  65. G. S. Canright, S.M. Girvin, Science. 247, 1197 (1990).

    ADS  Google Scholar 

  66. L. Piela, Ideas of Quantum Chemistry, 2nd edn, Elsevier, Amsterdam (2014).

  67. M. D. Girardeau, J. Math. Phys. 10, 1302 (1969).

    ADS  MathSciNet  Google Scholar 

  68. I. G. Kaplan, in: Group Theoretical Methods in Physics (Ed. V.I. Man’ko), Nauka, Moscow (1980).

  69. I. G. Kaplan, Int. J. Quant. Chem. 107, 2595 (2007).

    ADS  Google Scholar 

  70. I. G. Kaplan, Mol. Phys. 116, 658 (2018).

    ADS  Google Scholar 

  71. S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Row Peterson, New York (1961).

    MATH  Google Scholar 

  72. I. G. Kaplan, O.B. Rodimova, Int. J. Quantum Chem. 7, 1203 (1973).

    Google Scholar 

  73. I. G. Kaplan, Symmetry of Many-Electron Systems, Acad. Press, New York (1975).

    Google Scholar 

  74. J. M. Leinaas, J. Myrheim, Nuovo Cimento B 37, 1 (1977).

    ADS  Google Scholar 

  75. F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982).

    ADS  Google Scholar 

  76. W. Kołos and J. Rychlewski, J. Chem. Phys. 98, 3960. (1993).

    ADS  Google Scholar 

  77. L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995).

    ADS  Google Scholar 

  78. I. G. Kaplan, Intermolecular Interactions. Physical Picture, Computational Methods and Model Potentials, John Wiley & Sons, Chichester, England (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Kaplan.

Additional information

The paper is devoted to the memory of Victor Plotnikov.

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 9–23, August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, I.G. The Pauli Exclusion Principle and the Problems of its Theoretical Substantiation1. Russ Phys J 63, 1305–1321 (2020). https://doi.org/10.1007/s11182-020-02174-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02174-5

Keywords

Navigation