Skip to main content
Log in

Duffin–Kemmer–Petiau Particles are Bosons

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The parametrized Duffin–Kemmer–Petiau wave equation is formulated for many relativistic particles of spin-0 or spin-1. The first-quantized formulation lacks the fields of creation and annihilation operators which satisfy commutation relations subject to causality conditions, and which are essential to the Quantum Field Theoretic proof of the spin-statistics connection. It is instead proved that the wavefunctions for identical particles must be symmetric by extension of the nonrelativistic argument of Jabs (Found Phys 40:776–792, 2010). The causal commutators of Quantum Field Theory restrict entanglement to separations of the order of the Compton wavelength \(\hbar /mc\) . The entanglement manifest in the symmetric Duffin–Kemmer–Petiau wavefunctions is unrestricted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duffin, R.J.: Phys. Rev. 54, 1114 (1938)

    Article  ADS  Google Scholar 

  2. Kemmer, N.: Proc. R. Soc. Lond. A 173(952), 91 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  3. Petiau, G.: Acad. Roy. de Belg. 16(2), 3 (1936)

    Google Scholar 

  4. Cho, A.: Science 337(6091), 141 (2012)

    Article  ADS  Google Scholar 

  5. Cho, A.: Science 337(6097), 911 (2012)

    ADS  Google Scholar 

  6. Griffiths, D.: Introduction to Elementary Particles, 2nd edn. Wiley, Weinheim (2008)

    MATH  Google Scholar 

  7. Sprungmann, D., Westerholt, K., Zabel, H., Weides, M., Kohlstedt, H.: Phys. Rev. B 82, 060505 (2010)

    Article  ADS  Google Scholar 

  8. Itzykson, C., Zuber, J.B.: Quantum Field Theory. Dover, Mineola (2005)

    MATH  Google Scholar 

  9. Weinberg, S.: The Quantum Theory of Fields, vol. 1. Foundations. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  10. Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  11. Srednicki, M.: Quantum Field Theory. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  12. Haag, R.: Phys. Rev. 112(2), 669 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  13. Araki, H., Hepp, K., Ruelle, D.: Helv. Phys. Acta 35(III), 164 (1962)

  14. Fredenhagen, K.: Commun. Math. Phys. 97, 461 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. Summers, S.J.: In: Halvorson, H. (ed.) Deep Beauty, pp. 317–341. (Cambridge University Press, Cambridge (2011)

    Chapter  Google Scholar 

  16. Olson, J.S., Ralph, T.C.: Phys. Rev. A 85(012306), 1 (2012)

    Google Scholar 

  17. Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., Hanson, R.: Nature 526(7575), 682 (2015)

    Article  ADS  Google Scholar 

  18. Jabs, A.: Found. Phys. 40, 776 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Jabs, A.: Connecting spin and statistics in quantum mechanics (2014). arXiv:0810.2399

  20. Garcia Alvarez, E.T., Gaioli, F.H.: Found. Phys. 28(10), 1529 (1998)

  21. Johnson, J.E.: Phys. Rev. 181(5), 1755 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  22. Fanchi, J.: Parametrized Relativistic Quantum Theory. Kluwer, Dordrecht (1993)

    Book  Google Scholar 

  23. Bennett, A.F.: Ann. Phys. 345, 1 (2014)

    Article  ADS  Google Scholar 

  24. Bennett, A.F.: First quantized electrodynamics (2014). arXiv:1406.0750

  25. Bennett, A.F.: Found. Phys. 45(4), 370 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. International Series in Pure and Applied Physics. New York, McGraw-Hill (1964)

    MATH  Google Scholar 

  27. Arshansky, R., Horwitz, L.P., Lavie, Y.: Found. Phys. 13(12), 1167 (1983)

    Article  ADS  Google Scholar 

  28. Bennett, A.F.: First quantized pair interactions (2015). arXiv:1406.2310

  29. Harish-Chandra, W.: Proc. R. Soc. A 186(1007), 502 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ghose, P., Majumdar, A.S., Guha, S., Sau, J.: Phys. Lett. A 290, 205 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. Aharonovich, I., Horwitz, L.: J. Math. Phys. 52, 082901 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. Weinberg, S.: Lectures on Quantum Mechanics. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  33. Sozzi, M.: Discrete Symmetries and CP Violation: From Experiment to Theory. Oxford University Press, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Bennett.

Appendices

Appendix A: Scattering Amplitudes

The Møller operator \(\omega _+\) acting on the positive–mass, free incident wavefunction \(\phi _i\) is defined by

$$\begin{aligned} \omega _+ \phi _i (x,\tau )=\lim _{\tau ' \rightarrow -\infty }\frac{+1}{{\mathrm {i}}}\int d^4x'\, \Gamma _+(x,\tau ,x',\tau ')\phi _i(x',\tau ')\,. \end{aligned}$$
(74)

Thus the wavefunction \(\omega _+\phi _i(x,\tau )\) is the propagation to \(\tau \) , through (52), of the asymptotic wavefunction \(\phi _i(x',\tau ')\) . Similarly, for the positive–mass, free final wavefunction \(\phi _f\) ,

$$\begin{aligned} \omega _- \phi _f(x,\tau )=\lim _{\tau '' \rightarrow +\infty }\frac{-1}{{\mathrm {i}}}\int d^4x''\, \Gamma _-(x,\tau ,x'',\tau '')\phi _f(x'',\tau '')\,, \end{aligned}$$
(75)

and thus the wavefunction \(\omega _-\phi _f(x,\tau )\) is the precursor at \(\tau \) of the asymptotic wavefunction \(\phi _f(x'',\tau '')\) . It follows from the psuedo–unitary propagation that the Stueckelberg scattering matrix

$$\begin{aligned} S_{fi} = \int d^4x\, \overline{\omega _- \phi _f(x,\tau )}\omega _+ \phi _i (x,\tau ) \end{aligned}$$
(76)

is independent of the parameter \(\tau \) . It may be shown that the Møller operators have the Markov property, and so

$$\begin{aligned} S_{fi}= \lim _{\tau \rightarrow +\infty } \int d^4x\, \overline{\phi _i(x,\tau )}\omega _+ \phi _i (x,\tau )\,. \end{aligned}$$
(77)

It is eventually inferred that the incoming and final masses \(m_i\) and \(m_f\) are the same, owing to the gauge field \({\mathcal A}^\mu \) being massless. The scattering amplitudes and cross-sections so obtained agree, after a conventional scaling for dimensionality, to those obtained by integrating with respect to coordinate time \(x^0\) at fixed mass \(m=m_i=m_f\) . The cross sections may be calculated perturbatively, with radiative corrections and anomalies recovered as in [24] .

As indicated in Sect. 3 the parameter \(\tau \) may be eliminated in favour of \(X^0\) , the center of a wave packet in coordinate time \(x^0\) . Following the convention in scattering calculations [26] it is assumed that as \(\tau ' \rightarrow -\infty \) , or equivalently as \({X^0}' \rightarrow -\infty \) , the spacetime support of the wave packet does not overlap that of the scattering field \({\mathcal A}^\mu (x)\) and so the packet is asymptotically free, with a similar assumption and a similar conclusion as \(\tau ''\rightarrow +\infty \).

Appendix B: Spin-0, Spin-1/2

1.1 (i) Spin-0

The DKP five-spinor for a spin-0 particle is \(\psi =(\partial _{0}\rho ,\partial _{1}\rho ,\partial _{2}\rho , \partial _{3}\rho ,-mp)\), where \(\rho \) satisifies the Klein–Gordon equation [26, p5]

$$\begin{aligned} \partial _\mu \partial ^\mu \rho +m^2\rho =0. \end{aligned}$$
(78)

The four \(5 \times 5\) DKP matrices are

$$\begin{aligned} \beta _0= {\mathrm {i}} \left( \begin{array}{lll} 0 &{} \quad \mathbf 0^t &{} \quad -1 \\ \mathbf 0&{} \quad Z &{} \quad \mathbf 0\\ 1 &{} \quad \mathbf 0^t &{} \quad 0 \end{array} \right) \end{aligned}$$
(79)

and (for \(\mathrm {j}=1,2,3)\)

$$\begin{aligned} \beta _\mathrm {j}= {\mathrm {i}} \left( \begin{array}{lll} 0 &{} \quad \mathbf 0^t &{} \quad 0 \\ \mathbf 0&{} \quad Z &{} \quad \mathbf e_\mathrm {j} \\ 0 &{} \quad \mathbf e_\mathrm {j}^{\;t} &{} \quad 0 \end{array} \right) . \end{aligned}$$
(80)

These obey the meson algebra (8), and also (11) where now

$$\begin{aligned} \eta _0=2\beta _0^{\;2}-1= \left( \begin{array}{lll} 1 &{} \quad \mathbf 0^t &{} \quad 0\\ \mathbf 0&{} \quad -I &{} \quad \mathbf 0\\ 0 &{} \quad \mathbf 0^t &{} \quad 1 \end{array} \right) . \end{aligned}$$
(81)

The single eigenstates of the projections \(\Lambda _u\) and \(\Lambda _v\) are

$$\begin{aligned} \mathsf {w}_\pm = \frac{1}{\sqrt{2}}\left( \begin{array}{l} 1\\ \mathbf 0\\ \pm {\mathrm {i}} \end{array} \right) , \end{aligned}$$
(82)

in the rest frame, while the three eigenstates of \(\Lambda _z\) are

$$\begin{aligned} \mathsf {z}_0=\left( \begin{array}{l} \mathbf {0}^t\\ I\\ \mathbf {0}^t \end{array} \right) , \end{aligned}$$
(83)

also in the rest frame.

The rotation operator \(O({\mathbf s}, \theta )\) is now

$$\begin{aligned} O({\mathbf s},\theta )= \left( \begin{array}{lll} 1 &{} \quad \mathbf 0^t &{} \quad 0\\ \mathbf 0&{} \quad \exp ({\mathrm {i}}\theta {\mathbf s} \cdot {\mathbf V}) &{} \quad \mathbf 0\\ 0 &{} \quad \mathbf 0^t &{} \quad 1 \end{array} \right) . \end{aligned}$$
(84)

As pointed out by Duffin [1], the spatial gradient of \(\rho \) responds to a rotation. The five eigenvectors of O are

$$\begin{aligned} X= \left( \begin{array}{lllll} 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad {\mathbf v}_0 &{} \quad 0 &{} \quad {\mathbf v}_{-1}&{}{\mathbf v}_{+1}\\ 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0\\ \end{array} \right) . \end{aligned}$$
(85)

1.2 (ii) Spin-1/2

The influence function \(\Gamma _+\) for the parametrized Dirac wave equation may be found in [23, 25]. The influence function for two particles, also given by (60), preserves any symmetry or antiysmmetry of the two-particle wavefunction. The rotation operator is, in terms of the Dirac matrices,

(86)

Its two eigenvalues \(\exp ({\mathrm {i}} l \theta )\) , where \(l=\pm 1/2\) , are doubly–degenerate. The projection operators for \(l=\pm 1/2\) are

(87)

That is, \(P({\mathbf s},l)\) projects any 4-spinor \(\psi \) onto a rotational eigenstate:

$$\begin{aligned} O({\mathbf s},\theta )P({\mathbf s},l)\psi =\exp ({\mathrm {i}} l \theta )P({\mathbf s},l)\psi \,. \end{aligned}$$
(88)

The wavefunction at \(\tau =0\) for two identical particles is also given by (66). The factor before the second summand in (66) is now \(\exp ( 2 \pi {\mathrm {i}} l)=-1\) and so Fermi–Dirac statistics are inferred.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, A.F. Duffin–Kemmer–Petiau Particles are Bosons. Found Phys 46, 1090–1108 (2016). https://doi.org/10.1007/s10701-016-0010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0010-2

Keywords

Navigation