Skip to main content

Advertisement

Log in

Metastable Fluid Decay During Electric Explosion of Metallic Foils

  • Published:
Russian Physics Journal Aims and scope

Results of experimental investigations into overheated metastable fluid decay during electric explosion of metallic foils are presented. Experiments have been performed using an experimental complex consisting of three current generators, one of which provides explosion of foil and two others – X-pinch-based radiographs – are used for diagnostic purposes. The upper limit of the decay time of an overheated metastable metal is determined experimentally. For aluminum conductor with deposited energy of (5.3 ± 0.5) kJ/g, the metastable state decay time is ~110 ns; for copper foil with deposited energy of (2.4 ± 0.2) kJ/g, it is ~260 ns; and for nickel foil with deposited energy of (1.3 ± 0.3) kJ/g, it is ~350 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Skripov, Metastable Fluid [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  2. G. A. Mesyats, Pulsed Power and Electronics [in Russian], Nauka, Moscow (2004).

    Google Scholar 

  3. G. A. Mesyats and D. I. Proskurovskii, Pis’ma Zh. Eksp. Teor. Fiz., 13, No. 1, 7–10 (1971).

    Google Scholar 

  4. V. S. Vorob’ev, S. P. Malyshenko, and S. I. Tkachenko, Teplofiz. Vysok. Temp., 43, No. 6, 905–918 (2005).

    Google Scholar 

  5. V. S. Sedoy, G. A. Mesyats, V. I. Oreshkin, et al., IEEE Trans. Plasma Sci., 27, No. 4, 845–850 (1999).

    Article  ADS  Google Scholar 

  6. M. I. Lerner, E. A. Glazkova, A. S. Lozhkomoev, et al., Powder Technol., 295, 307–314 (2016).

    Article  Google Scholar 

  7. W. Stygar et al., Phys. Rev. E, 69, 046403 (2004).

    Article  ADS  Google Scholar 

  8. E. V. Grabovsky et al., Plasma Phys. Rep., 30, No. 2, 139–146 (2004).

    Google Scholar 

  9. S. A. Slutz, M. C. Herrmann, R. A. Vesey, et al., Phys. Plasmas, 17, 056303 (2010).

    Article  ADS  Google Scholar 

  10. R. D. McBride, S. A. Slutz, R. A. Vesey, et al., Phys. Plasmas, 23, No. 1, 012705 (2016).

    Article  ADS  Google Scholar 

  11. T. J. Awe, B. S. Bauer, S. Fuelling, et al., Phys. Plasmas, 17, 102507 (2010).

    Article  ADS  Google Scholar 

  12. T. J. Awe, E. P. Yu, K. C. Yates, et al., IEEE Trans. Plasma Sci., 45, No. 4, 584–589 (2017).

    Article  ADS  Google Scholar 

  13. S. A. Chaikovsky, V. I. Oreshkin, G. A. Mesyats, et al., Phys. Plasmas, 16, No. 4, 042701 (2009).

    Article  ADS  Google Scholar 

  14. V. I. Oreshkin, S. A. Chaikovsky, I. M. Datsko, et al., Phys. Plasmas, 23, No. 12, 122107 (2016).

    Article  ADS  Google Scholar 

  15. G. S. Sarkisov et al., Phys. Rev. E, 66, 046413 (2002).

    Article  ADS  Google Scholar 

  16. R. B. Baksht, S. I. Tkachenko, V. M. Romanova, et al., Tech. Phys., 58, No. 8, 1129–1137 (2013).

    Article  Google Scholar 

  17. A. L. Surkaev, Tech. Phys., 60, No. 7, 981–988 (2015).

    Article  Google Scholar 

  18. V. I. Oreshkin, K. V. Khishchenko, P. R. Levashov, et al., Teplofiz. Vys. Temp., 50, No. 5, 625–637 (2012).

    Google Scholar 

  19. Shi Zongqian, Shi Yuanjie, Wang Kun, and Jia Shenli, Phys. Plasmas, 23, No. 3, 032707 (2016).

    Article  Google Scholar 

  20. G. A. Mesyats, T. A. Shelkovenko, G. V. Ivanenkov, et al., J. Exp. Teor. Phys., 111, No. 3, 363–370 (2010).

    Article  ADS  Google Scholar 

  21. V. I. Oreshkin, E. V. Oreshkin, S. A. Chaikovsky, and A. P. Artyomov, Phys. Plasmas, 23, No. 9, 092701 (2016).

    Article  ADS  Google Scholar 

  22. V. I. Oreshkin, A. P. Artyomov, S. A. Chaikovsky, et al., Phys. Plasmas, 24, No. 1, 012703 (2017).

    Article  ADS  Google Scholar 

  23. V. V. Kuznetsov, V. I. Oreshkin, A. S. Zhigalin, et al., J. Eng. Thermophys., 20, No. 3, 240–248 (2011).

    Article  Google Scholar 

  24. V. I. Oreshkin, A. S. Zhigalin, A. G. Rousskikh, and V. V. Kuznetsov, J. Eng. Thermophys., 22, No. 4, 288–297 (2013).

    Article  Google Scholar 

  25. R. B. Baksht, A. G. Rousskikh, A. S. Zhigalin, et al., Phys. Plasmas, 22, No. 10, 103521 (2015).

    Article  ADS  Google Scholar 

  26. B. Jones, D. J. Ampleford, R. A. Vesey, et al., Phys. Rev. Lett., 104, No. 12, 125001 (2010).

    Article  ADS  Google Scholar 

  27. A. Shishlov, S. Chaikovsky, A. Fedunin, et al., in: 7th Int. Conf. on Dense Z-Pinches, AIP Conf. Proc., 1088, Alexandria (2009), pp. 37–140.

  28. S. I. Krivosheev, V. V. Titkov, and G. A. Shneerson, Zh. Tekh. Fiz., 67, No. 4, 32 (1997).

    Google Scholar 

  29. Ya. E. Krasik, A. Grinenko, A. Sayapin, et al., IEEE Trans. Plasma Sci., 36, No. 2, 423–434 (2008).

    Article  ADS  Google Scholar 

  30. V. I. Oreshkin, S. A. Chaykovsky, N. I. Ratakhin, et al., Phys. Plasmas, 14, No. 10, 102703 (2007).

    Article  ADS  Google Scholar 

  31. T. J. Awe, K. J. Peterson, E. P. Yu, et al., Phys. Rev. Lett., 116, No. 6, 065001 (2016).

    Article  ADS  Google Scholar 

  32. A. G. Rousskikh, V. I. Oreshkin, A. S. Zhigalin, et al., Phys. Plasmas, 17, No. 3, 033505 (2010).

    Article  ADS  Google Scholar 

  33. A. G. Rousskikh, V. I. Oreshkin, S. A. Chaikovsky, et al., Phys. Plasmas, 15, 102706 (2008).

    Article  ADS  Google Scholar 

  34. V. I. Oreshkin, A. G. Rousskikh, S. A. Chaikovsky, and E. V. Oreshkin, Phys. Plasmas, 17, No. 7, 072703 (2010).

    Article  ADS  Google Scholar 

  35. I. I. Beilis, R. B. Baksht, V. I. Oreshkin, et al., Phys. Plasmas, 15, 013501 (2008).

    Article  ADS  Google Scholar 

  36. I. V. Lomonosov, V. E. Fortov, A. A. Frolova, et al., Zh. Tekh. Fiz., 73, No. 6, 66–75 (2003).

    Google Scholar 

  37. V. I. Oreshkin, S. A. Barengolts, and S. A. Chaikovsky, Zh. Tekh. Fiz., 77, No. 5, 108–116 (2007).

    Google Scholar 

  38. I. S. Grigor’eva and E. Z. Meilikhova, eds., Physical Quantities: A Handbook [in Russian], Energoatomizdat, Moscow (1991).

    Google Scholar 

  39. A. P. Artemov, A. V. Fedyunin, S. A. Chaikovsky, et al., Prib. Tekh. Eksp., No. 1, 75–80 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Oreshkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 123–130, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oreshkin, V.I., Zhigalin, A.S., Rousskikh, A.G. et al. Metastable Fluid Decay During Electric Explosion of Metallic Foils. Russ Phys J 60, 1400–1407 (2017). https://doi.org/10.1007/s11182-017-1228-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1228-y

Keywords

Navigation