Skip to main content
Log in

Electroluminescence of Zinc Complexes in Various OLED Structures

  • Published:
Russian Physics Journal Aims and scope

Results of spectral-luminescent and electroluminescent studies of organic semiconductor zinc complexes in light-emitting diode devices are presented. A displacement of the electroluminescence band maximum toward longer wavelengths with structure complication is shown. Devices based on zinc metal organic complexes have low threshold voltage (from 2.5 V) and brightness above 100 cd/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett., 51, 913 (1987).

    Article  ADS  Google Scholar 

  2. J. H. Buruoghes, D. C. Bradley, A. R. Brown, et al., Nature, 347, 539 (1990).

    Article  ADS  Google Scholar 

  3. E. Holder, B. M. W. Langeveld, and U. S. Schubert, Adv. Mater., 17, 1109 (2005).

    Article  Google Scholar 

  4. H. Yersin, Topics in Current Chem., 241, 1 (2004).

    Article  Google Scholar 

  5. H. Yersin, A. F. Rausch, R. Czerwieniec, et al., Coord. Chem. Rev., 255, 2622 (2011).

    Article  Google Scholar 

  6. H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials, Wiley-VCH, Weinheim (2008).

    Google Scholar 

  7. C.-M. Che, C.-C. Kwok, S.-W. Lai, et al., Chemistry – A Eur. J., 16, 233 (2010).

    Article  Google Scholar 

  8. M. A. Baldo, D. F. O’Brien, M. E. Thompson, et al., Phys. Rev., B60, 14422 (1999).

    Article  ADS  Google Scholar 

  9. C. Adachi, M. A. Baldo, M. E. Thompson, et al., J. Appl. Phys., 90, 5048 (2001).

    Article  ADS  Google Scholar 

  10. K. Okumoto, H. Kanno, Y. Hamaa, et al., Appl. Phys. Lett., 89, 063504 (2006).

    Article  ADS  Google Scholar 

  11. J. Kido and Y. Iizumi, Appl. Phys. Lett., 73, 2721 (1998).

    Article  ADS  Google Scholar 

  12. G. Yu, S. Yin, Z. Shuai, et al., J. Am. Chem. Soc., 125, 14816 (2003).

    Article  Google Scholar 

  13. P. Wang, Z. Hong, Z. Xie, et al., Chem. Commun., 14, 1664 (2003).

    Article  Google Scholar 

  14. C. X. Ding, C. H. He, and Y. S. Xie, Chinese Chem. Lett., 24, 463 (2013).

    Article  Google Scholar 

  15. J.-J. Wang, Y.-J. Zhang, Z. Chang, et al., Chinese Chem. Lett., 24, 270 (2013).

    Article  Google Scholar 

  16. Q. Wu, J. A. Lavigne, Y. Tao, et al., Inorg. Chem., 39, 5248 (2000).

    Article  Google Scholar 

  17. Y. Hamada, T. Sano, M. Fujita, et al., Jpn. J. Appl. Phys., 32, L511 (1993).

    Article  ADS  Google Scholar 

  18. A. V. Metelitsa, A. S. Burov, et al., Coord. Chem. Rev., 252, 812 (2008).

    Article  Google Scholar 

  19. Z. A. Savel’eva, S. A. Popov, R. F. Klevtsova, et al., Russ. Chem. Bull., 58, 1837 (2009).

    Article  Google Scholar 

  20. M. B. Bushuev, K. A. Vinogradova, V. P. Krivolapov, et al., Inorg. Chimica Acta., 371, 88 (2011).

    Article  Google Scholar 

  21. A. Vogler and H. Kunkely, Topics in Current Chem., 213, 143 (2001).

    Article  Google Scholar 

  22. B. W. D’Andrade, J. Brooks, V. Adamovich, et al., Adv. Mater., 14, 1032 (2002).

    Article  Google Scholar 

  23. X. Chen, Q. Zhou, Y. Cheng, et al., J. Lumin., 126, 81 (2007).

    Article  Google Scholar 

  24. P. X. Petrova and R. L. Tomova, Bulg. Chem. Commun., 45, 170 (2013).

    Google Scholar 

  25. L. Sapochak, A. Padmaperuma, N. Washton, et al., Am. Chem. Soc., 123, 6300 (2001).

    Article  Google Scholar 

  26. V. K. Rai, R. Strivastava, G. Chauhan, et al., Mater. Lett., 62, 2561 (2008).

    Article  Google Scholar 

  27. B.-S. Kim, D.-E. Kim, and G.-C. Choi, J. Electr. Eng. Technol., 4, 418 (2009).

    Article  Google Scholar 

  28. M.-A. Tehfe, F. Dumur, S. Telitel, et al., Eur. Polymer J., 49, 1040 (2013).

    Article  Google Scholar 

  29. A. M. A. Hassaan and M. A. Khalifa, Monatshefte für Chemie, 124, 803 (1993).

    Article  Google Scholar 

  30. F. Dumur, C. R. Mayer, K. Hoang-Thi, et al., Inorg. Chem., 48, 8120 (2009).

    Article  Google Scholar 

  31. F. Dumur, Synthetic Metals, 195, 241 (2014).

    Article  Google Scholar 

  32. M. G. Kaplunov, S. S. Krasnikova, S. L. Nikitenko, et al., Mol. Cryst. Liquid Cryst., 589, 48 (2014).

    Article  Google Scholar 

  33. S. S. Krasnikova, M. G. Kaplunov, and I. K. Yakushchenko, High Energy Chem., 43, 536 (2009).

    Article  Google Scholar 

  34. M. G. Kaplunov, S. S. Krasnikova, I. O. Balashova, et al., Mol. Cryst. Liquid Cryst., 535, 212 (2011).

    Article  Google Scholar 

  35. M. G. Kaplunov, S. S. Krasnikova, S. L. Nikitenko, et al., Nanoscale Res. Lett., 7, 206 (2012).

    Article  ADS  Google Scholar 

  36. S. L. Nikitenko, S. S. Krasnikova, M. G. Kaplunov, et al., Functional Mater., 19, 202 (2012).

    Google Scholar 

  37. M. G. Kaplunov, S. S. Krasnikova, S. L. Nikitenko, et al., Russ. Nanotech., 7, 91 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Odod.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 8–14, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odod, A.V., Nikonova, E.N., Nikonov, S.Y. et al. Electroluminescence of Zinc Complexes in Various OLED Structures. Russ Phys J 60, 7–13 (2017). https://doi.org/10.1007/s11182-017-1038-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-017-1038-2

Keywords

Navigation