Skip to main content
Log in

Structural-Phase Transformations of an fcc-Alloy During Thermal Cycling

  • Published:
Russian Physics Journal Aims and scope

Using an intermetallic compound of the Ni–Al system as an example, it is shown by the Monte Carlo technique that the processes developed during thermal cycling in the course of structural phase transformations in FCCalloys are irreversible. As a result of a heating–cooling cycle, a certain hysteresis is observed, whose presence suggests an irreversibility of these processes, which is indicative of the difference in the structural-phase states in the stages of heating and cooling. An analysis of the atomic and phase structure of the intermetallic system during its heating–cooling, i.e., in the course of order–disorder and disorder–order phase transformations has supported the difference in its structural-phase states in the stages of heating and cooling. Upon completion of the disorder–order phase transition, two antiphase domains with B2 superstructure are formed in the system. It is demonstrated that to ensure an order–disorder transition the system has to be somewhat overheated in contrast to a commonly acknowledged phase transformation temperature, while to achieve a disorder–order transition it has to be somewhat overcooled with respect to this temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Starostenkov, N. N. Medvedev, and O. V. Pozhidaeva, Mater. Sci. Forum, 567–568, 165–168 (2008).

    Article  Google Scholar 

  2. A. I. Potekaev, V. A. Starenchenko, V. V. Kulagina, et al., Low-Stability States of Metallic Systems (Ed. A. I. Potekaev) [in Russian], Tomsk, NTL Publ. (2012).

  3. A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Effect of Point and Planar Defects on Structural-Phase Transformationsin a Pre-Transitional Low-Stability Region of Metallic Systems (Systems (Ed. A. I. Potekaev) [in Russian], Tomsk, NTL Publ. (2014).

  4. A. I. Potekaev, E. A. Dudnik, M. D. Starostenkov, et al., Russ. Phys. J., 53, No. 3, 213–224 (2010).

    Article  MATH  Google Scholar 

  5. A. I. Potekaev, E. A. Dudnik, M. D. Starostenkov, V. V. Kulagina, et al., Russ. Phys. J., 53, No. 5, 465–479 (2010).

    Article  Google Scholar 

  6. A. I. Potekaev and V. V. Kulagina, Russ. Phys. J., 54, No. 8, 839–854 (2011).

    Article  Google Scholar 

  7. A. I. Potekaev and V. V. Kulagina, Izv. Vyssh. Uchebn. Zaved. Fiz., 52, No. 8/2, 456–459 (2009).

    Google Scholar 

  8. A. A. Klopotov, A. I. Potekaev, É. V. Kozlov, and V. V. Kulagina, Russ. Phys. J., 54, No. 9, 1012–1023 (2012).

    Article  Google Scholar 

  9. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 54, No. 4, 117–124 (2011).

    Google Scholar 

  10. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 9, No. 3, 367–374 (2012).

    Google Scholar 

  11. V. V. Kulagina, A. A. Chaplygina, A. A. Popova, et al., Russ. Phys. J., 55, No. 7, 814–824 (2012).

    Article  Google Scholar 

  12. A. I. Potekaev, S. V. Dmitriev, V. V. Kulagina, et al., Low-Stability Long-Period Structures in Metallic Systems [in Russian], Tomsk, NTL Publ. (2010).

    Google Scholar 

  13. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 9, No. 4, 503–509 (2012).

    Google Scholar 

  14. A. I. Potekaev, V. V. Kulagina, A. A. Chaplygina, et al., 55, No. 11, 1248–1257 (2013).

  15. A. I. Potekaev, V. V. Kulagina, A. A. Chaplygina, et al., 56, No. 6, 620–629 (2013).

  16. V. V. Kulagina, A. I. Potekaev, A. A. Klopotov, and M. D. Starostenkov, Russ. Phys. J., 55, No. 4, 323–361 (2012).

    Article  Google Scholar 

  17. A. I. Potekaev, A. A. Klopotov, V. E. Gunther, and V. V. Kulagina, Izv. Vyssh. Uchebn. Zaved. Chern. Metallurg., No. 10, 61–67 (2010).

  18. V. I. Iveronova and A. A. Kantselson, Short-Range Order in Solid Solutions [in Russian], Moscow, Nauka (1977).

    Google Scholar 

  19. M. A. Krivoglaz and A. A. Smirnov, The Theory of Ordering Alloys [in Russian], Moscow, Fizmatgiz (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Chaplygin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 52–57, April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaplygin, P.A., Starostenkov, M.D., Potekaev, A.I. et al. Structural-Phase Transformations of an fcc-Alloy During Thermal Cycling. Russ Phys J 58, 485–491 (2015). https://doi.org/10.1007/s11182-015-0525-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0525-6

Keywords

Navigation