Skip to main content
Log in

Preceramic metallocarbosilanes: synthesis, properties, thermal transformation

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Ceramic-forming metallocarbosilanes {Ta(Zr)PCS and Ta(Hf)PCS} with a specified molar ratio of refractory metal atoms Ta/Zr (Ta/Hf) were synthesized by co-condensation of oligodimethylsilylenemethylenes and alkylamides of refractory metals (simultaneously Ta and Zr or Ta and Hf). The physicochemical properties of Ta(Zr)PCS and Ta(Hf)PCS were studied. It was determined that the metallocarbosilanes are soluble in hydrocarbon solvents and may possess fiber-forming properties. Polymer fibers based on Ta(Zr)PCS with a molar ratio Ta/Zr = 4 were prepared, then underwent curing and ceramization. The surface morphology and chemical composition of SiC fibers modified with mixed carbides Ta4ZrC5 after carbidization at 1250, 1500, and 1900 °C under argon were studied. The process of thermal transformation of metallocarbosilanes into ceramic phases at temperatures of 1250 and 1500 °C was investigated. It was shown that the synthesized metallocarbosilanes are precursors of SiC ceramics modified with mixed carbides TaxZryCz or TaxHfyCz and can be used to obtain components (fibers, matrices, protective coatings) of ceramic composite materials with an ultrafine homogeneous stabilized structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Ionescu, S. Bernard, R. Lucas, P. Kroll, S. Ushakov, A. Navrotsky, R. Riedel, Adv. Eng. Mater., 2019, 1900269; DOI: https://doi.org/10.1002/adem.201900269.

  2. G. Mera, M. Gallei, S. Bernard, E. Ionescu, Nanomaterials, 2015, 5, 467; DOI: https://doi.org/10.3390/nano5020468.

    Article  Google Scholar 

  3. J. Yang, S. Dong, Y. Ding, Z. Wang, H. Zhou, B. Lu, J. Am. Ceram. Soc., 2010, 8, 2117; DOI: https://doi.org/10.1111/j.1551-2916.2010.03672.x.

    Article  Google Scholar 

  4. J. Yang, S. Dong, P. He, Q. Li, B. Wu, J. Hu, Z. Hu, Key Eng. Mater., 2012, 512–515, 681; DOI: https://doi.org/10.4028/www.scientific.net/KEM.512-515.681.

    Article  Google Scholar 

  5. Q. Li, S. Dong, Z. Wang, P. He, H. Zhou, J. Yang, B. Wu, J. Hu, Key Eng. Mater., 2012, 512–515, 715; DOI: https://doi.org/10.4028/www.scientific.net/KEM.512-515.715.

    Article  Google Scholar 

  6. Z. Yu, J. Zhan, C. Zhou, L. Yang, R. Li, H. Xia, J. Inorg. Organomet. Polym. Mater., 2011, 21, 412; DOI: https://doi.org/10.1007/s10904-011-9483-9.

    Article  CAS  Google Scholar 

  7. Y. Yu, Y. Guo, X. Cheng, Y. Zhang, J. Inorg. Organomet. Polym. Mater., 2010, 20, 714; DOI: https://doi.org/10.1007/s10904-010-9391-4.

    Article  CAS  Google Scholar 

  8. V. V. Vijay, S. G. Nair, K. J. Sreejith, R. Devasia, J. Inorg. Organomet. Polym., 2016, 26, 302; DOI: https://doi.org/10.1007/s10904-015-0314-2.

    Article  CAS  Google Scholar 

  9. S. Chen, J. Wang, H. Wang, Mater. Des., 2016, 90, 84; DOI: https://doi.org/10.1016/j.matdes.2015.10.019.

    Article  CAS  Google Scholar 

  10. Z. Xie, J. Niu, Z. Chen, J. Appl. Polym. Sci., 2012; DOI:https://doi.org/10.1002/app.38344.

  11. Z. Xie, S. Cao, J. Wang, X. Yan, S. Bernard, P. Miele, Mater. Sci. Eng. A, 2010, 527, 7086; DOI: https://doi.org/10.1016/j.msea.2010.07.087.

    Article  Google Scholar 

  12. Z. Yu, L. Yang, J. Zhan, C. Zhou, H. Min, Q. Zheng, H. Xia, J. Eur. Ceram. Soc., 2012, 32, 1291; DOI: https://doi.org/10.1016/j.jeurceramsoc.2011.12.015.

    Article  CAS  Google Scholar 

  13. Z. Yu, H. Min, J. Zhan, L. Yang, Ceram. Int., 2013, 39, 3999; DOI: https://doi.org/10.1016/j.ceramint.2012.10.250.

    Article  CAS  Google Scholar 

  14. Z. Yu, L. Yang, H. Min, P. Zhang, A. Liu, R. Riedel, J. Eur. Ceram. Soc., 2015, 35, 851; DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.09.009.

    Article  Google Scholar 

  15. H. Li, L. Zhang, L. Cheng, Y. Wang, Ceram. Int., 2009, 35, 2831; DOI: https://doi.org/10.1016/j.ceramint.2009.03.030.

    Article  CAS  Google Scholar 

  16. C. Liu, J. Chen, Z. Su, X. Yang, L. Cao, Q. Huang, Trans. Nonferrous Met. Soc. China, 2014, 24, 1779; DOI: https://doi.org/10.1016/S1003-6326(14)63253-2.

    Article  CAS  Google Scholar 

  17. Q. Wen, Y. Xu, B. Xu, C. Fasel, O. Guillon, G. Buntkowsky, Z. Yu, R. Riedel, E. Ionescu, Nanoscale, 2014, 6, 13678; DOI: https://doi.org/10.1039/c4nr03376k.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Q. Wen, Z. Yu, Y. Xu, Y. Lu, C. Fasel, K. Morita, O. Guillon, G. Buntkowsky, E. Ionescu, R. Riedel, J. Mater. Chem. C, 2018, 6, 855; DOI: https://doi.org/10.1039/c7tc05023b.

    Article  CAS  Google Scholar 

  19. Y. Lu, F. Chen, P. An, L. Ye, W. Qiu, T. Zhao, RSC Adv., 2016, 6, 88770; DOI: https://doi.org/10.1039/c6ra17723a.

    Article  ADS  CAS  Google Scholar 

  20. Q. Wen, X. Luan, L. Wang, X. Xu, E. Ionescu, R. Riedel, J. Eur. Ceram. Soc., 2019, 39, 2018; DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.01.040.

    Article  CAS  Google Scholar 

  21. Q. Wen, R. Riedel, E. Ionescu, Corros. Sci., 2018, 145, 191; DOI: https://doi.org/10.1016/j.corsci.2018.10.005.

    Article  CAS  Google Scholar 

  22. J. Cheng, X. Wang, H. Wang, C. Shao, J. Wang, J. Am. Ceram. Soc., 2017, 100, 5044; DOI: https://doi.org/10.1111/jace.15063.

    Article  CAS  Google Scholar 

  23. Z. Yu, Y. Yang, K. Mao, Y. Feng, Q. Wen, R. Riedel, J. Adv. Ceram., 2020, 9, 320; DOI: https://doi.org/10.1007/s40145-020-0371-z.

    Article  CAS  Google Scholar 

  24. Q. Wen, R. Riedel, E. Ionescu, Adv. Eng. Mater., 2018, 1800879; DOI: https://doi.org/10.1002/adem.201800879.

  25. A. M. Tsirlin, G. I. Shcherbakova, E. K. Florina, N. A. Popova, S. P. Gubin, E. M. Moroz, R. Riedel, E. Kroke, M. Steen, J. Eur. Ceram. Soc., 2002, 22, 2577; DOI: https://doi.org/10.1016/S0955-2219(02)00119-X.

    Article  CAS  Google Scholar 

  26. P. A. Storozhenko, G. I. Shcherbakova, A. M. Tsirlin, E. K. Florina, E. A. Izmailova, A. A. Savitskii, M. G. Kuznetsova, T. M. Kuznetsova, I. V. Stolyarova, G. Yu. Yurkov, S. P. Gubin, Inorg. Mater., 2006, 42, 1159; DOI: https://doi.org/10.1134/S0020168506100190.

    Article  CAS  Google Scholar 

  27. G. I. Shcherbakova, P. A. Storozhenko, M. Kh. Blokhina, V. V. Shatunov, D. V. Sidorov, D. G. Sidorov, G. Yu. Yurkov, J. Chem. Chem. Eng., 2014, 8, 232; DOI: https://doi.org/10.17265/1934-7375/2014.03.003.

    CAS  Google Scholar 

  28. G. I. Shcherbakova, M. Kh. Blokhina, P. A. Storozhenko, D. V. Zhigalov, D. G. Sidorov, T. L. Apukhtina, M. S. Varfolomeev, D. V. Sidorov, M. G. Kuznetsova, G. Yu. Yurkov, Inorg. Mater., 2014, 50, 423; DOI: https://doi.org/10.1134/S0020168514040153.

    Article  CAS  Google Scholar 

  29. P. A. Storozhenko, G. I. Shcherbakova, Mendeleev Commun., 2014, 24, 133; DOI: https://doi.org/10.1016/j.mencom.2014.04.001.

    Article  CAS  Google Scholar 

  30. G. I. Shcherbakova, M. Kh. Blokhina, P. A. Storozhenko, D. V. Zhigalov, M. S. Varfolomeev, A. I. Drachev, G. Yu. Yurkov, Ceram. Int., 2019, 45, 122; DOI: https://doi.org/10.1016/j.ceramint.2018.09.142.

    Article  CAS  Google Scholar 

  31. A. Markstrom, D. Andersson, K. Frick, Calphad, 2008, 32, 615; DOI: https://doi.org/10.1016/j.calphad.2008.07.014.

    Article  Google Scholar 

  32. S. A. Ghaffari, M. A. Faghihi-Sani, F. Golestani-Fard, M. Nojabayy, Int. J. Refract. Met. Hard Mater., 2013, 41, 180; DOI:https://doi.org/10.1016/j.ijrmhm.2013.03.009.

    Article  CAS  Google Scholar 

  33. R. A. Andrievskii, N. S. Strel’nikova, N. I. Poltoratskii, E. D. Kharkhardin, V. S. Smirnov, Powder Metall. Met. Ceram., 1967, 6, 65; DOI:https://doi.org/10.1007/BF00773385.

    Article  Google Scholar 

  34. Q. Wen, Doctoral dissertation, Technische Universität Darmstadt, Darmstadt, 2017, 146 p.

  35. Patent 2679145 RF; Byul. izobret. [Inventions Bull.], 2019, 4 (in Russian).

  36. G. I. Shcherbakova, P. A. Storozhenko, T. L. Apukhtina, D. V. Zhigalov, M. S. Varfolomeev, A. I. Drachev, A. A. Ashmarin, IOP Conf. Series: Mater. Sci. Eng., 2019, 525, 012057; DOI: https://doi.org/10.1088/1757-899X/525/1/012057.

    Article  CAS  Google Scholar 

  37. G. I. Shcherbakova, P. A. Storozhenko, D. V. Zhigalov, M. S. Varfolomeev, M. Kh. Blokhina, N. B. Kutinova, Russ. Chem. Bull., 2020, 69, 875; DOI: https://doi.org/10.1007/s11172-020-2844-1.

    Article  CAS  Google Scholar 

  38. J. Rodríguez-Carvajal, Physica B: Condensed Matter, 1993, 192, 55; DOI: https://doi.org/10.1016/0921-4526(93)90108-I.

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the State Scientific Center of the Russian Federation JSC State Research Institute of Chemistry and Technology of Organoelement Compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Shcherbakova.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 2, pp. 421–436, February, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakova, G.I., Blokhina, M.K., Storozhenko, P.A. et al. Preceramic metallocarbosilanes: synthesis, properties, thermal transformation. Russ Chem Bull 73, 421–436 (2024). https://doi.org/10.1007/s11172-024-4149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4149-2

Key words

Navigation