Skip to main content
Log in

Cocrystals of polynitrogen compounds as a basis for promising energetic materials: crystal structure prediction methods, their experimental verification, and evaluation of cocrystal properties

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The review concerns methods for modeling the crystal structure of polynitrogen compounds and their cocrystals. The state of the art in chemical research into (co)crystals of energetic compounds is described. Various structure modeling methods (including original ones) are considered and analyzed, and criteria for cocrystal formation at different co-former ratios are proposed. The results are discussed of studies on the search for crystal packings of various polynitrogen compounds and their cocrystals, on prediction of the possibility of cocrystal formation, and targeted synthesis of new substances. The predictive power of the developed structure modeling methods is confirmed by the results of X-ray diffraction studies of the synthesized cocrystals. Prospects for application of certain cocrystals as a basis for energetic materials are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. I. Kitaigorodsky, Mixed Crystals [Springer Series in Solid-State Sciences, Vol. 33], Springer-Verlag, Berlin, 1984, 404 pp.

    Google Scholar 

  2. E. A. Losev, B. A. Zakharov, T. N. Drebushchak, E. V. Boldyreva, Acta Crystallogr., Sect. C, 2011, 67, o297; DOI: https://doi.org/10.1107/S0108270111024620.

    Article  CAS  Google Scholar 

  3. B. A. Zakharov, B. A. Kolesov, E. V. Boldyreva, Phys. Chem. Chem. Phys., 2011, 13, 13106; DOI: https://doi.org/10.1039/C1CP20599D.

    Article  CAS  PubMed  Google Scholar 

  4. W. Zhu, X. Zhang, W. Hu, Sci. Bull., 2021, 66, 512; DOI: https://doi.org/10.1016/J.SCIB.2020.07.034.

    Article  CAS  Google Scholar 

  5. L. Sun, Y. Wang, F. Yang, X. Zhang, W. Hu, Adv. Mater., 2019, 31, 1902328; DOI: https://doi.org/10.1002/adma.201902328.

    Article  Google Scholar 

  6. J. Zhang, W. Xu, P. Sheng, G. Zhao, D. Zhu, Acc. Chem. Res., 2017, 50, 1654; DOI: https://doi.org/10.1021/acs.accounts.7b00124.

    Article  CAS  PubMed  Google Scholar 

  7. A. Karagianni, M. Malamatari, K. Kachrimanis, Pharmaceutics, 2018, 10, 18; DOI: https://doi.org/10.3390/pharmaceutics10010018.

    Article  PubMed  PubMed Central  Google Scholar 

  8. G. Bolla, B. Sarma, A. K. Nangia, Chem. Rev., 2022, 122, 11514; DOI: https://doi.org/10.1021/acs.chemrev.1c00987.

    Article  CAS  PubMed  Google Scholar 

  9. A. O. Surov, A. G. Ramazanova, A. P. Voronin, K. V. Drozd, A. V. Churakov, G. L. Perlovich, Pharma ceutics, 2023, 15, 836; DOI: https://doi.org/10.3390/pharmaceutics15030836.

    Article  CAS  Google Scholar 

  10. A. O. Surov, A. P. Voronin, K. V. Drozd, M. S. Gruzdev, G. L. Perlovich, J. Prashanth, S. Balasubramanian, Phys. Chem. Chem. Phys., 2021, 23, 9695; DOI: https://doi.org/10.1039/D1CP00793A.

    Article  CAS  PubMed  Google Scholar 

  11. A. Shaik, P. U. Bhagwat, P. Palanisamy, D. Chhabria, P. Dubey, S. Kirubakaran, V. Tiruvenkatam, CrystEngComm, 2023, 25, 2570; DOI: https://doi.org/10.1039/D3CE00056G.

    Article  CAS  Google Scholar 

  12. J. C. Bennion, A. J. Matzger, Acc. Chem. Res., 2021, 54, 1699; DOI: https://doi.org/10.1021/acs.accounts.0c00830.

    Article  CAS  PubMed  Google Scholar 

  13. M. Sultan, J. Wu, I. Ul Haq, M. Imran, L. Yang, J. J. Wu, J. Lu, L. Chen, Molecules, 2022, 27, 4775; DOI: https://doi.org/10.3390/molecules27154775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. N. V. Muravyev, L. L. Fershtat, I. L. Dalinger, K. Yu. Suponitsky, I. V. Ananyev, I. N. Melnikov, Cryst. Growth Des., 2022, 22, 7349; DOI: https://doi.org/10.1021/acs.cgd.2c00964.

    Article  CAS  Google Scholar 

  15. G. Liu, S.-H. Wei, C. Zhang, Cryst. Growth Des., 2020, 20, 7065; DOI: https://doi.org/10.1021/acs.cgd.0c01097.

    Article  CAS  Google Scholar 

  16. J. D. Dunitz, A. Gavezzotti, Cryst. Growth Des., 2012, 12, 5873; DOI: https://doi.org/10.1021/cg301293r.

    Article  CAS  Google Scholar 

  17. A. Mukherjee, G. R. Desiraju, Cryst. Growth Des., 2014, 14, 1375; DOI: https://doi.org/10.1021/cg401851z.

    Article  CAS  Google Scholar 

  18. Y. Jiang, Z. Yang, J. Guo, H. Li, Y. Liu, Y. Guo, M. Li, X. Pu, Nat. Commun., 2021, 12, 5950; DOI: https://doi.org/10.1038/s41467-021-26226-7.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  19. J. Maddox, Nature, 1988, 335, 201; DOI: https://doi.org/10.1038/335201a0.

    Article  ADS  Google Scholar 

  20. A. Gavezzotti, G. Filippini, Synth. Met., 1991, 40, 257; DOI: https://doi.org/10.1016/0379-6779(91)91781-5.

    Article  CAS  Google Scholar 

  21. D. E. Williams, PCK83: A Crystal Molecular Packing Analysis Program, QCPE, Indiana University, Bloomington, Indiana, 1984.

    Google Scholar 

  22. E. O. Pyzer-Knapp, H. P. G. Thompson, G. M. Day, Acta Crystallogr., Sect. B, 2016, 72, 477; DOI: https://doi.org/10.1107/S2052520616007708.

    Article  CAS  ADS  Google Scholar 

  23. A. N. Razdol’skii, N. E. Artem’eva, T. S. Pivina, V. A. Shlyapochnikov, Bull. Acad. Sci. USSR. Div. Chem. Sci., 1985, 34, 1872; DOI: https://doi.org/10.1007/BF00953926.

    Article  Google Scholar 

  24. T. S. Pivina, V. V. Shcherbukhin, M. S. Molchanova, N. S. Zefirov, Propellants, Explos. Pyrotech., 1995, 20, 144; DOI: https://doi.org/10.1002/prep.19950200309.

    Article  CAS  Google Scholar 

  25. M. S. Molchanova, Cand. Sci. (Chem.) Thesis, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 1997, 149 pp. (in Russian).

    Google Scholar 

  26. F. A. Momany, L. M. Carruthers, H. A. Scheraga, J. Phys. Chem., 1974, 78, 1621; DOI: https://doi.org/10.1021/j100609a006.

    Article  CAS  Google Scholar 

  27. A. V. Dzyabchenko, Russ. J. Phys. Chem. A, 2008, 82, 1663; DOI: https://doi.org/10.1134/S0036024408100075.

    Article  CAS  Google Scholar 

  28. A. V. Dzyabchenko, T. S. Pivina, E. A. Arnautova, J. Mol. Struct., 1996, 378, 67; DOI: https://doi.org/10.1016/0022-2860(95)09165-3.

    CAS  ADS  Google Scholar 

  29. D. J. Edwards, in Proc. 6th Int. Symp. Deton., Colorado, CA, USA, 1976.

  30. S. A. Gubin, V. V. Odintsov, V. A. Shargatov, V. I. Pepekin, Dokl. Chem., 1981, 261, 592 (in Russian).

    CAS  Google Scholar 

  31. A. S. Smirnov, S. P. Smirnov, T. S. Pivina, D. B. Lempert, L. K. Maslova, Russ. Chem. Bull., 2016, 65, 2315; DOI: https://doi.org/10.1007/s11172-016-1584-8.

    Article  CAS  Google Scholar 

  32. M. S. Molchanova, T. S. Pivina, E. A. Arnautova, N. S. Zefirov, J. Mol. Struct. (THEOCHEM), 1999, 465, 11; DOI: https://doi.org/10.1016/S0166-1280(98)00200-0.

    Article  Google Scholar 

  33. K. I. Rezchikova, A. M. Churakov, V. A. Shlyapochnikov, V. A. Tartakovsky, Russ. Chem. Bull., 1999, 48, 870; DOI: https://doi.org/10.1007/bf02494628.

    Article  CAS  Google Scholar 

  34. H. Shechter, Synthesis of High Energy 1,2,3,4-Tetrazine-1,3-Di-N-Oxides and Pentazine Poly-N-Oxides, Rpt. AFRL-SR-AR-TR-05-0032, Air Force Research Laboratory, Wright-Patterson Air, 2004.

    Google Scholar 

  35. J. L. Mendoza-Cortes, Q. An, W. A. Goddard III, C. Ye, S. Zybin, J. Comput. Chem., 2016, 37, 163; DOI: https://doi.org/10.1002/jcc.23893.

    Article  CAS  PubMed  Google Scholar 

  36. M. S. Klenov, A. A. Guskov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, I. V. Fedyanin, K. A. Lyssenko, V. A. Tartakovsky, Angew. Chem., Int. Ed., 2016, 55, 11472; DOI: https://doi.org/10.1002/anie.201605611.

    Article  CAS  Google Scholar 

  37. D. V. Khakimov, A. V. Dzyabchenko, T. S. Pivina, Russ. Chem. Bull., 2020, 69, 212; DOI: https://doi.org/10.1007/s11172-020-2748-0.

    Article  CAS  Google Scholar 

  38. D. V. Khakimov, A. V. Dzyabchenko, T. S. Pivina, Propellants, Explos. Pyrotech., 2019, 44, 1528; DOI: https://doi.org/10.1002/prep.201900252.

    Article  CAS  Google Scholar 

  39. Z. Yang, S. Yang, G. Li, J. Lin, Acta Phys.-Chim. Sin., 2007, 23, 285; DOI: https://doi.org/10.1016/S1872-1508(07)60020-5.

    CAS  Google Scholar 

  40. A. V. Dzyabchenko, D. V. Khakimov, T. S. Pivina, Gorenie i vzryv [Combustion and Explosion], 2016, 9, No. 2, 128 (in Russian).

    Google Scholar 

  41. D. V. Khakimov, L. L. Fershtat, T. S. Pivina, N. N. Makhova, J. Phys. Chem. A, 2021, 125, 3920; DOI: https://doi.org/10.1021/acs.jpca.1c02960.

    Article  CAS  PubMed  Google Scholar 

  42. D. V. Khakimov, V. P. Zelenov, T. S. Pivina, J. Comput. Chem., 2022, 43, 778; DOI: https://doi.org/10.1002/jcc.26833.

    Article  CAS  PubMed  Google Scholar 

  43. C. Wei, H. Huang, X. Duan, C. Pei, Propellants, Explos. Pyrotech., 2011, 36, 416; DOI: https://doi.org/10.1002/prep.201000022.

    Article  CAS  Google Scholar 

  44. H. Lin, Sh.-G. Zhu, H.-Z. Li, X.-H. Peng, J. Phys. Org. Chem., 2013, 26, 898; DOI: https://doi.org/10.1002/poc.3188.

    Article  CAS  Google Scholar 

  45. S. Zhang, H. Zhao, Adv. Mater. Res., 2014, 900, 251; DOI: https://doi.org/10.4028/www.scientific.net/AMR.900.251.

    Article  Google Scholar 

  46. R. A. Wiscons, A. J. Matzger, Cryst. Growth Des., 2017, 17, 901; DOI: https://doi.org/10.1021/acs.cgd.6b01766.

    Article  CAS  Google Scholar 

  47. Y.-J. Wei, F.-D. Ren, W.-J. Shi, Q. Zhao, J. Energ. Mater., 2016, 34, 426; DOI: https://doi.org/10.1080/07370652.2015.1115917.

    Article  CAS  ADS  Google Scholar 

  48. G. Han, R-j. Gou, F-d. Ren, S-h. Zhang, C-l. Wu, S-f. Zhu, Comput. Theor. Chem., 2017, 1109, 27; DOI: https://doi.org/10.1016/j.comptc.2017.03.044.

    Article  CAS  Google Scholar 

  49. G.-y. Hang, W.-l. Yu, T. Wang, J.-t. Wang, Z. Li, J. Mol. Model., 2017, 23, 30; DOI: https://doi.org/10.1007/s00894-016-3193-8.

    Article  PubMed  Google Scholar 

  50. G.-y. Hang, J.-t. Wang, T. Wang, H.-m. Shen, W.-l. Yu, R.-q. Shen, J. Mol. Model., 2022, 28, 58; DOI: https://doi.org/10.1007/s00894-022-05049-3.

    Article  CAS  PubMed  Google Scholar 

  51. G.-Y. Hang, W.-L. Yu, T. Wang, J.-T. Wang, Z. Li, Theor. Chem. Acc., 2018, 137, 114; DOI: https://doi.org/10.1007/s00214-018-2297-x.

    Article  Google Scholar 

  52. Y. Yu, Sh. Miao, K. Jia, H. Wang, W. Qin, S. Jing, Propellants, Explos. Pyrotech., 2023, 48, e202200280; DOI: https://doi.org/10.1002/PREP.202200280.

    Article  CAS  Google Scholar 

  53. K. Yu. Suponitsky, I. V. Fedyanin, V. A. Karnoukhova, V. A. Zalomlenkov, A. A. Gidaspov, V. V. Bakharev, A. B. Sheremetev, Molecules, 2021, 26, 7452; DOI: https://doi.org/10.3390/molecules26247452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. N. A. Mir, R. Dubey, G. R. Desiraju, Acc. Chem. Res., 2019, 52, 2210; DOI: https://doi.org/10.1021/acs.accounts.9b00211.

    Article  CAS  PubMed  Google Scholar 

  55. K. Wang, W. Zhu, Comput. Mater. Sci., 2020, 178, DOI: https://doi.org/10.1016/j.commatsci.2020.109643.

  56. R. F. B. Gonçalves, A. Kuznetsov, B. T. Rocco, L. Rocco, J. A. F. F. Rocco, Comput. Theor. Chem., 2022, 1212, 113723; DOI: https://doi.org/10.1016/j.comptc.2022.113723.

    Article  Google Scholar 

  57. F. Wang, G. Du, X. Liu, M. Shao, C. Zhang, L. Chen, Nanotechnol. Rev., 2022, 11, 2141; DOI: https://doi.org/10.1515/ntrev-2022-0124.

    Article  CAS  Google Scholar 

  58. M. Pakhnova, I. Kruglov, A. Yanilkin, A. R. Oganov, Phys. Chem. Chem. Phys., 2020, 22, 16822; DOI: https://doi.org/10.1039/d0cp03042b.

    Article  CAS  PubMed  Google Scholar 

  59. A. O. Lyakhov, A. R. Oganov, H. T. Stokes, Q. Zhu, Comput. Phys. Commun., 2013, 184, 1172; DOI: https://doi.org/10.1016/j.cpc.2012.12.009.

    Article  CAS  ADS  Google Scholar 

  60. Th. P. Senftle, S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng, Y. K. Shin, Ch. Junkermeier, R. Engel-Herbert, M. J. Janik, H. M. Aktulga, T. Verstraelen, A. Grama, A. C. T. van Duin, Npj Comput. Mater., 2016, 2, 15011; DOI: https://doi.org/10.1038/npjcompumats.2015.11.

    Article  CAS  ADS  Google Scholar 

  61. J. Hafner, J. Comput. Chem., 2008, 29, 2044; DOI: https://doi.org/10.1002/jcc.21057.

    Article  CAS  PubMed  Google Scholar 

  62. A. V. Dzyabchenko, J. Struct. Chem. (USSR), 1984, 25, 416; DOI: https://doi.org/10.1007/BF00749334.

    Article  Google Scholar 

  63. R. J. Gdanitz, Chem. Phys. Lett., 1992, 190, 391; DOI: https://doi.org/10.1016/0009-2614(92)85357-G.

    Article  CAS  ADS  Google Scholar 

  64. H. R. Karfunkel, F. J. J. Leusen, R. J. Gdanitz, J. Comput. Aided Mater. Des., 1994, 1, 177; DOI: https://doi.org/10.1007/BF00708708.

    Article  CAS  ADS  Google Scholar 

  65. J. R. Holden, Z. Du, H. L. Ammon, J. Comput. Chem., 1993, 14, 422; DOI: https://doi.org/10.1002/jcc.540140406.

    Article  CAS  Google Scholar 

  66. M. A. Neumann, C. Tedesco, S. Destri, D. R. Ferro, W. Porzio, J. Appl. Crystallogr., 2002, 35, 296; DOI: https://doi.org/10.1107/S0021889802002844.

    Article  CAS  ADS  Google Scholar 

  67. G. M. Day, W. D. S. Motherwell, W. Jones, Phys. Chem. Chem. Phys., 2007, 9, 1693; DOI: https://doi.org/10.1039/b612190j.

    Article  CAS  PubMed  Google Scholar 

  68. C. Ouvrard, S. L. Price, Cryst. Growth Des., 2004, 4, 1119; DOI: https://doi.org/10.1021/cg049922u.

    Article  CAS  Google Scholar 

  69. G. M. Day, J. Chisholm, N. Shan, W. D. S. Motherwell, W. Jones, Cryst. Growth Des., 2004, 4, 1327; DOI: https://doi.org/10.1021/cg0498148.

    Article  CAS  Google Scholar 

  70. B. P. van Eijck, Phys. Chem. Chem. Phys., 2002, 4, 4789; DOI: https://doi.org/10.1039/b206088d.

    Article  CAS  Google Scholar 

  71. A. J. Pertsin, A. I. Kitaigorodsky, The Atom-Atom Potential Method. Application to Organic Molecular Solids (Springer Series in Chemical Physics, Vol. 43), Ed. M. Cardona, Springer-Verlag, Berlin, Heidelberg, 1987; DOI: https://doi.org/10.1007/978-3-642-82712-9_1.

  72. A. I. Kitaygorodsky, Tetrahedron, 1961, 14, 230; DOI: https://doi.org/10.1016/S0040-4020(01)92172-6.

    Article  Google Scholar 

  73. D. E. Williams, J. Chem. Phys., 1966, 45, 3770; DOI: https://doi.org/10.1063/1.1727399.

    Article  CAS  ADS  Google Scholar 

  74. D. E. Williams, Acta Crystallogr., Sect. A, 1972, 28, 84; DOI: https://doi.org/10.1107/S0567739472000178.

    Article  CAS  ADS  Google Scholar 

  75. D. S. Coombes, Philos. Mag. B, 1996, 73, 117; DOI: https://doi.org/10.1080/13642819608239117.

    Article  CAS  ADS  Google Scholar 

  76. D. S. Coombes, S. L. Price, D. J. Willock, M. Leslie, J. Phys. Chem., 1996, 100, 7352; DOI: https://doi.org/10.1021/jp960333b.

    Article  CAS  Google Scholar 

  77. D. E. Williams, D. J. Houpt, Acta Crystallogr., Sect. B, 1986, 42, 286; DOI: https://doi.org/10.1107/S010876818609821X.

    Article  ADS  Google Scholar 

  78. A. Abraha, D. E. Williams, Inorg. Chem., 1999, 38, 4224; DOI: https://doi.org/10.1021/ic990573g.

    Article  CAS  Google Scholar 

  79. D. E. Williams, J. Comput. Chem., 2001, 22, 1; DOI: https://doi.org/10.1002/1096-987X(20010115)22:1<1::AID-JCC2>3.0.CO;2-6.

    Article  CAS  Google Scholar 

  80. D. E. Williams, J. Comput. Chem., 2001, 22, 1154; DOI: https://doi.org/10.1002/jcc.1074.

    Article  CAS  Google Scholar 

  81. G. M. Day, S. L. Price, J. Am. Chem. Soc., 2003, 125, 16434; DOI: https://doi.org/10.1021/ja0383625.

    Article  CAS  PubMed  Google Scholar 

  82. A. Jagielska, Ye. A. Arnautova, H. A. Scheraga, J. Phys. Chem. B, 2004, 108, 12181; DOI: https://doi.org/10.1021/jp040115f.

    Article  CAS  Google Scholar 

  83. Ye. A. Arnautova, A. Jagielska, J. Pillardy, H. A. Scheraga, J. Phys. Chem. B, 2003, 107, 7143; DOI: https://doi.org/10.1021/jp0301498.

    Article  CAS  Google Scholar 

  84. A. K. Al-Matar, H. Binous, J. Radioanal. Nucl. Chem., 2016, 310, 139; DOI: https://doi.org/10.1007/s10967-016-4814-5.

    Article  CAS  Google Scholar 

  85. Ch. A. Gatsiou, C. S. Adjiman, C. C. Pantelides, Faraday Discuss., 2018, 211, 297; DOI: https://doi.org/10.1039/c8fd00064f.

    Article  CAS  ADS  PubMed  Google Scholar 

  86. R. F. W. Bader, Acc. Chem. Res., 1985, 18, 9; DOI: https://doi.org/10.1021/ar00109a003.

    Article  CAS  Google Scholar 

  87. R. S. Mulliken, J. Chem. Phys., 1955, 23, 1841; DOI: https://doi.org/10.1063/1.1740589.

    Article  CAS  ADS  Google Scholar 

  88. C. M. Breneman, K. B. Wiberg, J. Comput. Chem., 1990, 11, 361; DOI: https://doi.org/10.1002/jcc.540110311.

    Article  CAS  Google Scholar 

  89. B. H. Besler, K. M. Merz, Jr., P. A. Kollman, J. Comput. Chem., 1990, 11, 431; DOI: https://doi.org/10.1002/jcc.540110404.

    Article  CAS  Google Scholar 

  90. Ch. I. Bayly, P. Cieplak, W. D. Cornell, P. A. Kollman, J. Phys. Chem., 1993, 97, 10269; DOI: https://doi.org/10.1021/j100142a004.

    Article  CAS  Google Scholar 

  91. H. Hu, Z. Lu, W. Yang, J. Chem. Theory Comput., 2007, 3, 1004; DOI: https://doi.org/10.1021/ct600295n.

    Article  CAS  PubMed  Google Scholar 

  92. D. E. Williams, R. R. Weller, J. Am. Chem. Soc., 1983, 105, 4143; DOI: https://doi.org/10.1021/ja00351a003.

    Article  CAS  Google Scholar 

  93. P. G. Karamertzanis, C. C. Pantelides, Mol. Simul., 2004, 30, 413; DOI: https://doi.org/10.1080/08927020410001680769.

    Article  CAS  Google Scholar 

  94. S. L. Mayo, B. D. Olafson, W. A. Goddard III, J. Phys. Chem., 1990, 94, 8897; DOI: https://doi.org/10.1021/j100389a010.

    Article  CAS  Google Scholar 

  95. M. A. Neumann, J. Phys. Chem. B, 2008, 112, 9810; DOI: https://doi.org/10.1021/JP710575H/SUPPL_FILE/JP710575H-FILE003.PDF.

    Article  CAS  PubMed  Google Scholar 

  96. T. G. Cooper, K. E. Hejczyk, W. Jones, G. M. Day, J. Chem. Theory Comput., 2008, 4, 1795; DOI: https://doi.org/10.1021/ct800195g.

    Article  CAS  PubMed  Google Scholar 

  97. A. J. Stone, Chem. Phys. Lett., 1981, 83, 233; DOI: https://doi.org/10.1016/0009-2614(81)85452-8.

    Article  CAS  ADS  Google Scholar 

  98. A. J. Stone, M. Alderton, Mol. Phys., 1985, 56, 1047; DOI: https://doi.org/10.1080/00268978500102891.

    Article  CAS  ADS  Google Scholar 

  99. S. Brodersen, S. Wilke, F. J. J. Leusen, G. Engel, Phys. Chem. Chem. Phys., 2003, 5, 4923; DOI: https://doi.org/10.1039/b306396h.

    Article  CAS  Google Scholar 

  100. A. V. Dzyabchenko, Russ. J. Phys. Chem. A, 2008, 82, 758; DOI: https://doi.org/10.1134/S0036024408050129.

    Article  CAS  Google Scholar 

  101. A. D. Buckingham, P. W. Fowler, A. J. Stone, Int. Rev. Phys. Chem., 1986, 5, 107; DOI: https://doi.org/10.1080/01442358609353370.

    Article  CAS  Google Scholar 

  102. G. M. Day, S. L. Price, M. Leslie, J. Phys. Chem. B, 2003, 107, 10919; DOI: https://doi.org/10.1021/jp035125f.

    Article  CAS  Google Scholar 

  103. G. M. Day, S. L. Price, M. Leslie, Cryst. Growth Des., 2001, 1, 13; DOI: https://doi.org/10.1021/cg0055070.

    Article  CAS  Google Scholar 

  104. D. J. Willock, S. L. Price, M. Leslie, C. R. A. Catlow, J. Comput. Chem., 1995, 16, 628; DOI: https://doi.org/10.1002/jcc.540160511.

    Article  CAS  Google Scholar 

  105. S. L. Price, M. Leslie, G. W. A. Welch, M. Habgood, L. S. Price, P. G. Karamertzanis, G. M. Day, Phys. Chem. Chem. Phys., 2010, 12, 8478; DOI: https://doi.org/10.1039/c004164e.

    Article  CAS  PubMed  Google Scholar 

  106. P. G. Karamertzanis, S. L. Price, J. Chem. Theory Comput., 2006, 2, 1184; DOI: https://doi.org/10.1021/ct600111s.

    Article  CAS  Google Scholar 

  107. M. U. Schmidt, U. Englert, J. Chem. Soc., Dalton Trans., 1996, 2077; DOI: https://doi.org/10.1039/dt9960002077.

  108. M. U. Schmidt, H. Kalkhof, CRYSCA, Program for Crystal Structure Calculations of Flexible Molecules, Clariant GmbH, Frankfurt am Main, 1997.

    Google Scholar 

  109. D. E. Williams, Acta Crystallogr., Sect. A, 1996, 52, 326; DOI: https://doi.org/10.1107/S0108767395016679.

    Article  ADS  Google Scholar 

  110. B. P. van Eijck, J. Kroon, J. Comput. Chem., 1999, 20, 799; DOI: https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<799::AID-JCC6>3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  111. B. P. van Eijck, J. Kroon, Acta Crystallogr., Sect. B, 2000, 56, 535; DOI: https://doi.org/10.1107/S0108768100000276.

    Article  ADS  Google Scholar 

  112. I. M. Sobol’, USSR Comput. Math. Math. Phys., 1967, 7, 86; DOI: https://doi.org/10.1016/0041-5553(67)90144-9.

    Article  Google Scholar 

  113. R. G. Della Valle, E. Venuti, A. Brillante, A. Girlando, J. Chem. Phys., 2003, 118, 807; DOI: https://doi.org/10.1063/1.1527896.

    Article  CAS  ADS  Google Scholar 

  114. P. G. Karamertzanis, C. C. Pantelides, J. Comput. Chem., 2005, 26, 304; DOI: https://doi.org/10.1002/jcc.20165.

    Article  CAS  PubMed  Google Scholar 

  115. A. Gavezzotti, J. Am. Chem. Soc., 1991, 113, 4622; DOI: https://doi.org/10.1021/ja00012a034.

    Article  CAS  Google Scholar 

  116. D. W. M. Hofmann, T. Lengauer, Acta Crystallogr., Sect. A, 1997, 53, 225; DOI: https://doi.org/10.1107/S0108767396014353.

    Article  ADS  Google Scholar 

  117. D. W. M. Hofmann, T. Lengauer, J. Mol. Struct., 1999, 474, 13; DOI: https://doi.org/10.1016/S0022-2860(98)00556-0.

    Article  ADS  Google Scholar 

  118. A. V. Dzyabchenko, V. Agafonov, V. A. Davydov, J. Phys. Chem. A, 1999, 103, 2812; DOI: https://doi.org/10.1021/jp983951w.

    Article  CAS  Google Scholar 

  119. V. K. Belsky, O. N. Zorkaya, P. M. Zorky, Acta Crystallogr., Sect. A, 1995, 51, 473; DOI: https://doi.org/10.1107/S0108767394013140.

    Article  ADS  Google Scholar 

  120. T. Steiner, Acta Crystallogr., Sect. B, 2000, 56, 673; DOI: https://doi.org/10.1107/S0108768100002652.

    Article  CAS  ADS  Google Scholar 

  121. A. J. Cruz Cabeza, E. Pidcock, G. M. Day, W. D. S. Motherwell, W. Jones, CrystEngComm, 2007, 9, 556; DOI: https://doi.org/10.1039/b702073b.

    Article  Google Scholar 

  122. G. M. Day, W. D. S. Motherwell, H. L. Ammon, S. X. M. Boerrigter, R. G. Della Valle, E. Venuti, A. Dzyabchenko, J. D. Dunitz, B. Schweizer, B. P. van Eijck, P. Erk, J. C. Facelli, V. E. Bazterra, M. B. Ferraro, D. W. M. Hofmann, F. J. J. Leusen, C. Liang, C. C. Pantelides, P. G. Karamertzanis, S. L. Price, T. C. Lewis, H. Nowell, A. Torrisi, H. A. Scheraga, Y. A. Arnautova, M. U. Schmidt, P. Verwer, Acta Crystallogr., Sect. B, 2005, 61, 511; DOI: https://doi.org/10.1107/S0108768105016563.

    Article  CAS  ADS  Google Scholar 

  123. A. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya, A. D. Boese, J. G. Brandenburg, P. J. Bygrave, R. Bylsma, J. E. Campbell, R. Car, D. H. Case, R. Chadha, J. C. Cole, K. Cosburn, H. M. Cuppen, F. Curtis, G. M. Day, R. A. DiStasio, A. Dzyabchenko, B. P. van Eijck, D. M. Elking, J. A. van den Ende, J. C. Facelli, M. B. Ferraro, L. Fusti-Molnar, Ch.-A. Gatsiou, T. S. Gee, R. de Gelder, L. M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D. W. M. Hofmann, J. Hoja, R. K. Hylton, L. Iuzzolino, W. Jankiewicz, D. T. de Jong, J. Kendrick, N. J. J. de Klerk, H.-Y. Ko, L. N. Kuleshova, X. Li, S. Lohani, F. J. J. Leusen, A. M. Lund, J. Lv, N. Marom, A. E. Masunov, P. McCabe, D. P. McMahon, H. Meekes, M. P. Metz, A. J. Misquitta, Sh. Mohamed, B. Monserrat, R. J. Needs, M. A. Neumann, J. Nyman, Sh. Obata, H. Oberhofer, A. R. Oganov, A. M. Orendt, G. I. Pagola, C. C. Pantelides, Ch. J. Pickard, R. Podeszwa, L. S. Price, S. L. Price, A. Pulido, M.G. Read, K. Reuter, E. Schneider, Ch. Schober, G. P. Shields, P. Singh, I. J. Sugden, K. Szalewicz, Ch. R. Taylor, A. Tkatchenko, M. E. Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y. Wang, R. E. Watson, G. A. de Wijs, J. Yang, Q. Zhu, C. R. Groom, Acta Crystallogr., Sect. B, 2016, 72, 439; DOI: https://doi.org/10.1107/S2052520616007447.

    Article  CAS  ADS  Google Scholar 

  124. D. A. Bardwell, C. S. Adjiman, Ye. A. Arnautova, E. Bartashevich, S. X. M. Boerrigter, D. E. Braun, A. J. Cruz-Cabeza, G. M. Day, R. G. Della Valle, G. R. Desiraju, B. P. van Eijck, J. C. Facelli, M. B. Ferraro, D. Grillo, M. Habgood, D. W. M. Hofmann, F. Hofmann, K. V. J. Jose, P. G. Karamertzanis, A. V. Kazantsev, J. Kendrick, L. N. Kuleshova, F. J. J. Leusen, A. V. Maleev, A. J. Misquitta, Sh. Mohamed, R. J. Needs, M. A. Neumann, D. Nikylov, A. M. Orendt, R. Pal, C. C. Pantelides, Ch. J. Pickard, L. S. Price, S. L. Price, H. A. Scheraga, J. van den Streek, T. S. Thakur, S. Tiwari, E. Venuti, I. K. Zhitkov, Acta Crystallogr., Sect. B, 2011, 67, 535; DOI: https://doi.org/10.1107/S0108768111042868.

    Article  CAS  ADS  PubMed Central  Google Scholar 

  125. H. R. Karfunkel, F. J. J. Leusen, R. J. Gdanitz, J. Comput. Aided Mater. Des., 1994, 1, 177; DOI: https://doi.org/10.1007/BF00708708.

    Article  CAS  ADS  Google Scholar 

  126. H. R. Karfunkel, R. J. Gdanitz, J. Comput. Chem., 1992, 13, 1171; DOI: https://doi.org/10.1002/jcc.540131002.

    Article  CAS  Google Scholar 

  127. F. J. J. Leusen, Cryst. Growth Des., 2003, 3, 189; DOI: https://doi.org/10.1021/cg020034d.

    Article  CAS  Google Scholar 

  128. I. D. H. Oswald, D. R. Allan, G. M. Day, W. D. S. Motherwell, S. Parsons, Cryst. Growth Des., 2005, 5, 1055; DOI: https://doi.org/10.1021/cg049647b.

    Article  CAS  Google Scholar 

  129. J. Pillardy, C. Czaplewski, W. J. Wedemeyer, H. A. Scheraga, Helv. Chim. Acta, 2000, 83, 2214; DOI: https://doi.org/10.1002/1522-2675(20000906)83:9<2214::AID-HLCA2214>3.0.CO;2-E.

    Article  CAS  Google Scholar 

  130. J. Pillardy, Ye. A. Arnautova, C. Czaplewski, K. D. Gibson, H. A. Scheraga, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 12351; DOI: https://doi.org/10.1073/pnas.231479298.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  131. V. E. Bazterra, M. B. Ferraro, J. C. Facelli, J. Chem. Phys., 2002, 116, 5984; DOI: https://doi.org/10.1063/1.1458547.

    Article  CAS  ADS  Google Scholar 

  132. V. E. Bazterra, M. B. Ferraro, J. C. Facelli, J. Chem. Phys., 2002, 116, 5992; DOI: https://doi.org/10.1063/1.1458548.

    Article  CAS  ADS  Google Scholar 

  133. V. E. Bazterra, M. B. Ferraro, J. C. Facelli, Int. J. Quantum Chem., 2004, 96, 312; DOI: https://doi.org/10.1002/qua.10726.

    Article  CAS  Google Scholar 

  134. O. Oña, V. E. Bazterra, M. C. Caputo, M. B. Ferraro, P. Fuentealba, J. C. Facelli, J. Mol. Struct. (THEOCHEM), 2004, 681, 149; DOI: https://doi.org/10.1016/j.theochem.2004.04.060.

    Article  Google Scholar 

  135. V. E. Bazterra, M. Thorley, M. B. Ferraro, J. C. Facelli, J. Chem. Theory Comput., 2007, 3, 201; DOI: https://doi.org/10.1021/ct6002115.

    Article  CAS  PubMed  Google Scholar 

  136. A. R. Oganov, C. W. Glass, J. Chem. Phys., 2006, 124, 244704; DOI: https://doi.org/10.1063/1.2210932.

    Article  ADS  PubMed  Google Scholar 

  137. C. W. Glass, A. R. Oganov, N. Hansen, Comput. Phys. Commun., 2006, 175, 713; DOI: https://doi.org/10.1016/j.cpc.2006.07.020.

    Article  CAS  ADS  Google Scholar 

  138. W. D. S. Motherwell, Mol. Cryst. Liq. Cryst., 2001, 356, 559; DOI: https://doi.org/10.1080/10587250108023734.

    Article  CAS  Google Scholar 

  139. J. R. Holden, Z. Du, H. L. Ammon, J. Comput. Chem., 1993, 14, 422; DOI: https://doi.org/10.1002/jcc.540140406.

    Article  CAS  Google Scholar 

  140. R. Martoňák, A. Laio, M. Bernasconi, C. Ceriani, P. Raiteri, F. Zipoli, M. Parrinello, Z. Kristallogr., 2005, 220, 489; DOI: https://doi.org/10.1524/zkri.220.5.489.65078.

    Article  Google Scholar 

  141. H. Song, L. Vogt-Maranto, R. Wiscons, A. J. Matzger, M. E. Tuckerman, J. Phys. Chem. Lett., 2020, 11, 9751; DOI: https://doi.org/10.1021/acs.jpclett.0c02647.

    Article  CAS  PubMed  Google Scholar 

  142. D. H. Bowskill, I. J. Sugden, S. Konstantinopoulos, C. S. Adjiman, C. C. Pantelides, Annu. Rev. Chem. Biomol. Eng., 2021, 12, 593; DOI: https://doi.org/10.1146/annurev-chembioeng-060718-030256.

    Article  CAS  PubMed  Google Scholar 

  143. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem., 2004, 25, 1157; DOI: https://doi.org/10.1002/jcc.20035.

    Article  CAS  PubMed  Google Scholar 

  144. H. Sun, J. Phys. Chem. B, 1998, 102, 7338; DOI: https://doi.org/10.1021/jp980939v.

    Article  CAS  Google Scholar 

  145. J. C. Osborn, P. York, J. Mol. Struct., 1999, 474, 43; DOI: https://doi.org/10.1016/S0022-2860(98)00558-4.

    Article  CAS  ADS  Google Scholar 

  146. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024; DOI: https://doi.org/10.1021/ja00051a040.

    Article  Google Scholar 

  147. I. Jen Chen, D. Yin, A. D. MacKerell, J. Comput. Chem., 2002, 23, 199; DOI: https://doi.org/10.1002/jcc.1166.

    Article  PubMed  Google Scholar 

  148. W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc., 1996, 118, 11225; DOI: https://doi.org/10.1021/ja9621760.

    Article  CAS  Google Scholar 

  149. T. A. Halgren, J. Comput. Chem., 1996, 17, 490; DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P.

    Article  CAS  Google Scholar 

  150. G. M. Day, W. D. Sam Motherwell, W. Jones, Cryst. Growth Des., 2005, 5, 1023; DOI: https://doi.org/10.1021/cg049651n.

    Article  CAS  Google Scholar 

  151. D. C. Sorescu, B. M. Rice, D. L. Thompson, J. Phys. Chem. A, 1998, 102, 8386; DOI: https://doi.org/10.1021/jp9820525.

    Article  CAS  Google Scholar 

  152. D. C. Sorescu, B. M. Rice, D. L. Thompson, J. Phys. Chem. A, 1999, 103, 989; DOI: https://doi.org/10.1021/jp983847e.

    Article  CAS  Google Scholar 

  153. S. W. Benson, J. H. Buss, J. Chem. Phys., 1958, 29, 546; DOI: https://doi.org/10.1063/1.1744539.

    Article  CAS  ADS  Google Scholar 

  154. N. Cohen, S. W. Benson, Chem. Rev., 1993, 93, 2419; DOI: https://doi.org/10.1021/cr00023a005.

    Article  CAS  Google Scholar 

  155. A. Smirnov, D. Lempert, T. Pivina, in Energetics Science and Technology in Central Europe (Center for [i>Energetic Concepts Development Series), Ed. R. W. Armstrong, Univ. of Maryland, College Park, 2012, p. 97.

  156. P. R. Duchowicz, E. A. Castro, J. Arg. Chem. Soc., 2003, 91, No. 1–3, 29.

    CAS  Google Scholar 

  157. M. S. Westwell, M. S. Searle, D. J. Wales, D. H. Williams, J. Am. Chem. Soc., 1995, 117, 5013; DOI: https://doi.org/10.1021/ja00123a001.

    Article  CAS  Google Scholar 

  158. D. V. Khakimov, T. S. Pivina, J. Phys. Chem. A, 2022, 126, 5207, DOI: https://doi.org/10.1021/acs.jpca.2c01114.

    Article  CAS  PubMed  Google Scholar 

  159. D. G. Piercey, D. E. Chavez, S. Heimsch, Ch. Kirst, T. M. Klapötke, J. Stierstorfer, Propellants, Explos. Pyrotech., 2015, 40, 491; DOI: https://doi.org/10.1002/prep.201400224.

    Article  CAS  Google Scholar 

  160. T. M. Klapötke, D. G. Piercey, J. Stierstorfer, M. Weyrauther, Propellants, Explos. Pyrotech., 2012, 37, 527; DOI: https://doi.org/10.1002/prep.201100151.

    Article  Google Scholar 

  161. P. Politzer, J. S. Murray, M. E. Edward Grice, M. Desalvo, E. Miller, Mol. Phys., 1997, 91, 923; DOI: https://doi.org/10.1080/002689797171030.

    Article  CAS  ADS  Google Scholar 

  162. A. Hu, B. Larade, S. Dudiy, H. Abou-Rachid, L.-S. Lussier, H. Guo, Propellants, Explos. Pyrotech., 2007, 32, 331; DOI: https://doi.org/10.1002/prep.200700037.

    Article  CAS  Google Scholar 

  163. H. J. Singh, M. K. Upadhyay, S. K. Sengupta, J. Mol. Model., 2014, 20, 2205; DOI: https://doi.org/10.1007/s00894-014-2205-9.

    Article  PubMed  Google Scholar 

  164. M. A. Suntsova, O. V. Dorofeeva, J. Mol. Graph. Model., 2017, 72, 220; DOI: https://doi.org/10.1016/j.jmgm.2017.01.013.

    Article  CAS  PubMed  Google Scholar 

  165. N. M. Baraboshkin, A.-M. Stratulat, T. S. Pivina, Russ. Chem. Bull., 2021, 70, 1893; DOI: https://doi.org/10.1007/s11172-021-3293-1.

    Article  CAS  Google Scholar 

  166. N. V. Muravyev, K. A. Monogarov, I. N. Melnikov, A. N. Pivkina, V. G. Kiselev, Phys. Chem. Chem. Phys., 2021, 23, 15522; DOI: https://doi.org/10.1039/d1cp02201f.

    Article  CAS  PubMed  Google Scholar 

  167. A. F. Bedford, P. B. Edmondson, C. T. Mortimer, J. Chem. Soc., 1962, 2927; DOI: https://doi.org/10.1039/jr9620002927.

  168. D. V. Khakimov, T. S. Pivina, Gorenie i vzryv [Com bus tion and Explosion], 2016, 9, No. 1, 118 (in Russian).

    Google Scholar 

  169. Yu. N. Matyushin, V. I. Pepekin, V. P. Lebedev, V. V. Chironov, L. M. Kostikova, Y. O. Inozemtsev, T. S. Pivina, A. B. Sheremetev, Proc. of the 30th Int. Ann. Conf. of the Fraunhofer ICT, Fraunhofer-Institut für Chemische Technologie, Pfinztal, 1999, p. 77.1.

    Google Scholar 

  170. C. Pan, M. P. Sampson, Y. Chai, R. H. Hauge, J. L. Margrave, J. Phys. Chem., 1991, 95, 2944; DOI: https://doi.org/10.1021/j100161a003.

    Article  CAS  Google Scholar 

  171. E. Scrocco, J. Tomasi, Adv. Quantum Chem., 1978, 11, 115; DOI: https://doi.org/10.1016/S0065-3276(08)60236-1.

    Article  CAS  ADS  Google Scholar 

  172. V. P. Zelenov, N. M. Baraboshkin, D. V. Khakimov, N. V. Muravyev, D. B. Meerov, I. A. Troyan, T. S. Pivina, A. V. Dzyabchenko, I. V. Fedyanin, Cryst EngComm, 2020, 22, 4823; DOI: https://doi.org/10.1039/d0ce00639d.

    Article  CAS  Google Scholar 

  173. R. A. Sayle, E. J. Milner-White, Trends Biochem. Sci., 1995, 20, 374; DOI: https://doi.org/10.1016/S0968-0004(00)89080-5.

    Article  CAS  PubMed  Google Scholar 

  174. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09 Rev. D.01, Gaussian, Inc., Wallingford CT, 2016.

    Google Scholar 

  175. D. E. Williams, Acta Crystallogr., Sect. A, 1971, 27, 452; DOI: https://doi.org/10.1107/S0567739471000998.

    Article  CAS  ADS  Google Scholar 

  176. F. Bertaut, J. Phys. le Radium, 1952, 13, 499; DOI: https://doi.org/10.1051/jphysrad:019520013011049900.

    Article  CAS  Google Scholar 

  177. A. Dzyabchenko, H. A. Scheraga, Acta Crystallogr., Sect. B, 2004, 60, 228; DOI: https://doi.org/10.1107/S010876810400312X.

    Article  ADS  Google Scholar 

  178. A. V. Dzyabchenko, Sov. Phys. Crystallogr., 1983, 28.

  179. R. Fletcher, Fortran Subroutines for Minimization by Quasi-Newton Methods, Tech. Rpt. AERE-R7125, Atomic Energy Res. Est., Harwell, 1972.

    Google Scholar 

  180. A. V. Dzyabchenko, Acta Crystallogr., Sect. B, 1994, 50, 414; DOI: https://doi.org/10.1107/S0108768193013552.

    Article  ADS  Google Scholar 

  181. M. R. Nyden, G. A. Petersson, J. Chem. Phys., 1981, 75, 1843; DOI: https://doi.org/10.1063/1.442208.

    Article  CAS  ADS  Google Scholar 

  182. M. A. Suntsova, O. V. Dorofeeva, J. Chem. Eng. Data, 2014, 59, 2813; DOI: https://doi.org/10.1021/je500440y.

    Article  CAS  Google Scholar 

  183. M. A. Suntsova, O. V. Dorofeeva, J. Chem. Eng. Data, 2016, 61, 313; DOI: https://doi.org/10.1021/acs.jced.5b00558.

    Article  CAS  Google Scholar 

  184. M. J. Kamlet, S. J. Jacobs, J. Chem. Phys., 1968, 48, 23; DOI: https://doi.org/10.1063/1.1667908.

    Article  CAS  ADS  Google Scholar 

  185. L. M. Foroughi, A. J. Matzger, Cryst. Growth Des., 2021, 21, 5873; DOI: https://doi.org/10.1021/acs.cgd.1c00746.

    Article  CAS  Google Scholar 

  186. L. Hu, R. J. Staples, J. M. Shreeve, Chem. Eng. J., 2021, 420, 129839; DOI: https://doi.org/10.1016/J.CEJ.2021.129839.

    Article  CAS  Google Scholar 

  187. N. Liu, B. Duan, X. Lu, Q. Zhang, M. Xu, H. Mo, B. Wang, CrystEngComm, 2019, 21, 7271; DOI: https://doi.org/10.1039/c9ce01221d.

    Article  CAS  Google Scholar 

  188. K. B. Landenberger, O. Bolton, A. J. Matzger, J. Am. Chem. Soc., 2015, 137, 5074; DOI: https://doi.org/10.1021/jacs.5b00661.

    Article  CAS  PubMed  Google Scholar 

  189. J. Zhang, J. M. Shreeve, CrystEngComm, 2016, 18, 6124; DOI: https://doi.org/10.1039/c6ce01239f.

    Article  CAS  Google Scholar 

  190. N. M. Baraboshkin, I. D. Nesterov, T. S. Pivina, Gorenie i vzryv [Combustion and Explosion], 2020, 13, No. 3, 129; DOI: https://doi.org/10.30826/ce20130313 (in Russian).

    Article  Google Scholar 

  191. H. H. Cady, A. C. Larson, D. T. Cromer, Acta Crystallogr., 1966, 20, 336; DOI: https://doi.org/10.1107/s0365110x6600080x.

    Article  CAS  Google Scholar 

  192. A. S. Bailey, J. R. Case, Tetrahedron, 1958, 3, 113; DOI: https://doi.org/10.1016/0040-4020(58)80003-4.

    Article  CAS  Google Scholar 

  193. A. S. Bailey, R. J. P. Williams, J. D. Wright, J. Chem. Soc., 1965, 2579; DOI: https://doi.org/10.1039/JR9650002579.

  194. H. Zhang, C. Guo, X. Wang, J. Xu, X. He, Y. Liu, X. Liu, H. Huang, J. Sun, Cryst. Growth Des., 2013, 13, 679; DOI: https://doi.org/10.1021/cg301353f.

    Article  Google Scholar 

  195. Z. Yang, H. Li, X. Zhou, C. Zhang, H. Huang, J. Li, F. Nie, Cryst. Growth Des., 2012, 12, 5155; DOI: https://doi.org/10.1021/cg300955q.

    Article  CAS  Google Scholar 

  196. L. M. Foroughi, R. A. Wiscons, D. R. Du Bois, A. J. Matzger, Chem. Commun., 2020, 56, 2111; DOI: https://doi.org/10.1039/c9cc09465b.

    Article  CAS  Google Scholar 

  197. N. M. Baraboshkin, V. P. Zelenov, M. E. Minyaev, T. S. Pivina, CrystEngComm, 2022, 24, 235; DOI: https://doi.org/10.1039/d1ce00977j.

    Article  CAS  Google Scholar 

  198. N. M. Baraboshkin, D. V. Khakimov, V. P. Zelenov, A. S. Smirnov, T. S. Pivina, Gorenie i vzryv [Combustion and Explosion], 2021, 14, No. 4, 104; DOI: https://doi.org/10.30826/ce21140411 (in Russian).

    Article  Google Scholar 

  199. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, J. Chem. Phys., 2006, 125, 124304; DOI: https://doi.org/10.1063/1.2354495.

    Article  ADS  PubMed  Google Scholar 

  200. Z. Yang, Y. Wang, J. Zhou, H. Li, H. Huang, F. Nie, Propellants, Explos. Pyrotech., 2014, 39, 9; DOI: https://doi.org/10.1002/prep.201300086.

    Article  CAS  Google Scholar 

  201. X. Wei, Y. Ma, X. Long, C. Zhang, CrystEngComm, 2015, 17, 7150; DOI: https://doi.org/10.1039/c5ce01355k.

    Article  CAS  Google Scholar 

  202. N. M. Baraboshkin, V. P. Zelenov, A. V. Dzyabchenko, I. V. Fedyanin, T. S. Pivina, J. Mol. Struct., 2019, 1190, 135; DOI: https://doi.org/10.1016/j.molstruc.2019.04.037.

    Article  CAS  ADS  Google Scholar 

  203. A. S. Zharkov, P. I. Kalmykov, Yu. N. Burtsev, N. P. Kuznetsova, I. A. Merzhanov, N. V. Chukanov, V. V. Zakharov, G. V. Romanenko, K. A. Sidorov, V. E. Zarko, Russ. Chem. Bull., 2014, 63, 1785; DOI: https://doi.org/10.1007/s11172-014-0668-6.

    Article  CAS  Google Scholar 

  204. A. M. Churakov, S. L. loffe, V. A. Tartakovsky, Mendeleev Commun., 1995, 6, 227; DOI: https://doi.org/10.1070/MC1995v005n06ABEH000539.

    Article  Google Scholar 

  205. V. P. Zelenov, A. A. Lobanova, S. V. Sysolyatin, N. V. Sevodina, Russ. J. Org. Chem., 2013, 49, 455; DOI: https://doi.org/10.1134/S107042801303024X.

    Article  CAS  Google Scholar 

  206. V. A. Teselkin, Combust. Explos. Shock Waves, 2009, 45, 632; DOI: https://doi.org/10.1007/s10573-009-0076-7.

    Article  Google Scholar 

  207. V. G. Kiselev, N. P. Gritsan, V. E. Zarko, P. I. Kalmykov, V. A. Shandakov, Combust. Explos. Shock Waves, 2007, 43, 562; DOI: https://doi.org/10.1007/s10573-007-0074-6.

    Article  Google Scholar 

  208. N. M. Baraboshkin, D. V. Khakimov, T. S. Pivina, Russ. Chem. Bull., 2022, 71, 38; DOI: https://doi.org/10.1007/s11172-022-3373-x.

    Article  CAS  Google Scholar 

  209. V. I. Pepekin, Russ. J. Phys. Chem. B, 2010, 4, 954; DOI: https://doi.org/10.1134/s1990793110060138.

    Article  Google Scholar 

  210. V. I. Pepekin, Yu. N. Matyushin, T. V. Gubina, Russ. J. Phys. Chem. B, 2011, 5, 97; DOI: https://doi.org/10.1134/S1990793111020102.

    Article  CAS  Google Scholar 

  211. Y. Ma, A. Zhang, X. Xue, D. Jiang, Y. Zhu, C. Zhang, Cryst. Growth Des., 2014, 14, 6101; DOI: https://doi.org/10.1021/cg501267f.

    Article  CAS  Google Scholar 

  212. M. A. Spackman, D. Jayatilaka, CrystEngComm, 2009, 11, 19; DOI: https://doi.org/10.1039/b818330a.

    Article  CAS  Google Scholar 

  213. A. Smirnov, D. Lempert, T. Pivina, D. Khakimov, Cent. Eur. J. Energ. Mater., 2011, 8, 233.

    CAS  Google Scholar 

  214. Recommendations on Transportation of Dangerous Cargoes. Management and Criteria of Tests (ST/SG/AC.10/11/Rev. 4), United Nations, New York–Geneva, 4th ed., 2003, 120 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Pivina.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 2, pp. 243–282, February, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraboshkin, N.M., Zelenov, V.P., Khakimov, D.V. et al. Cocrystals of polynitrogen compounds as a basis for promising energetic materials: crystal structure prediction methods, their experimental verification, and evaluation of cocrystal properties. Russ Chem Bull 73, 243–282 (2024). https://doi.org/10.1007/s11172-024-4137-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4137-6

Key words

Navigation