Skip to main content
Log in

Di-tert-alkyl-substituted catechols with an imidazole substituent: synthesis, structure, and properties

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Di-tert-alkyl-substituted catechols with a heterocyclic imidazole-type substituent were synthesized in three steps from catecholaldehydes. The 1,1,4,4-tetramethylbutanediyl substituent was shown to be resistant to the action of acids in the demethylation reaction. The isomerization of 3,4,5-substituted catechols to the 3,4,6-substituted isomers was observed. The molecular structures of the synthesized compounds in the crystalline state were established by X-ray diffraction analysis. For the catechol derivatives, the tertiary substituent in the ortho position to the imidazole moiety was shown to have an effect on the mutual arrangement of the catechol and heterocyclic moieties. The electrochemical properties of the synthesized imidazole-containing catechols were studied and their anti-radical activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Saiz-Poseu, J. Mancebo-Aracil, F. Nador, F. Busqué, D. Ruiz-Molina, Angew. Chem., Int. Ed., 2019, 58, 696; DOI: https://doi.org/10.1002/anie.201801063.

    Article  CAS  Google Scholar 

  2. J. H. Ryu, S. Hong, H. Lee, Acta Biomat., 2015, 27, 101; DOI: https://doi.org/10.1016/j.actbio.2015.08.043.

    Article  CAS  Google Scholar 

  3. C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev., 2015, 115, 3012; DOI: https://doi.org/10.1021/cr4001226.

    Article  CAS  PubMed  Google Scholar 

  4. M. Albrecht, Chem. Rev., 2001, 101, 3457; DOI: https://doi.org/10.1021/cr0103672.

    Article  CAS  PubMed  Google Scholar 

  5. A. Khan, P. Singh, A. Srivastava, Microbiol. Res., 2018, 212–213, 103; DOI: https://doi.org/10.1016/j.micres.2017.10.012.

    Article  PubMed  Google Scholar 

  6. A. Bino, A. Baldisserotto, E. Scalambra, V. Dissette, D. E. Vedaldi, A. Salvador, E. Durini, S. Manfredini, S. Vertuani, J. Enzyme Inhib. Med. Chem., 2017, 32, 527; DOI: https://doi.org/10.1080/14756366.2016.1265523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. Liu, G. Fu, H. Feng, J. Guan, F. Li, X. Lu, W.-K. Wong, R. A. Jones, Opt. Mater. (Amsterdam, Neth.), 2017, 69, 158; DOI: https://doi.org/10.1016/j.optmat.2017.04.035.

    CAS  Google Scholar 

  8. A. O. Eseola, O. Akogun, H. Gorls, O. Atolani, G. A. Kolawole, W. Plass, J. Mol. Catal. A: Chem., 2014, 387, 112; DOI: https://doi.org/10.1016/j.molcata.2014.02.032.

    Article  CAS  Google Scholar 

  9. W. Seo, K. L. Carpenter, J. A. Gaugler, W. Shao, K. A. Werling, P. M. Fournier, D. S. Lambrecht, A. Star, J. Polym. Sci., Part A: Polym. Chem., 2017, 55, 1095; DOI: https://doi.org/10.1002/pola.28470.

    Article  CAS  Google Scholar 

  10. N. O. Mahmoodi, S. Rahimi, N. M. Pasandideh, Dyes Pigm., 2017, 143, 387; DOI: https://doi.org/10.1016/j.dyepig.2017.04.053.

    Article  CAS  Google Scholar 

  11. M. S. Ahmad, M. Khalid, M. A. Shaheen, M. N. Tahir, M. U. Khan, A. A. C. Braga, H. A. Shad, J. Phys. Chem. Solids, 2018, 115, 265; DOI: https://doi.org/10.1016/j.jpcs.2017.12.054.

    Article  CAS  Google Scholar 

  12. A. Bhattacharyya, N. Guchhait, New J. Chem., 2020, 44, 10671; DOI: https://doi.org/10.1039/D0NJ02489A.

    Article  CAS  Google Scholar 

  13. M. Taha, N. H. Ismail, S. Imran, M. H. Mohamad, A. Wadood, F. Rahim, S. M. Saad, A. Rehman, K. M. Khan, Bioorg. Chem., 2016, 65, 100; DOI: https://doi.org/10.1016/j.bioorg.2016.02.004.

    Article  CAS  PubMed  Google Scholar 

  14. A. A. Adegboye, K. M. Khan, U. Salar, S. A. Aboaba, Kanwal, S. Chigurupati, I. Fatima, M. Taha, A. Wadood, J. I. Mohammad, H. Khan, S. Perveen, Eur. J. Med. Chem., 2018, 150, 248; DOI: https://doi.org/10.1016/j.ejmech.2018.03.011.

    Article  CAS  PubMed  Google Scholar 

  15. P. Zhang, W. Huang, Y. Wang, H. Li, C. He, C. Liang, H. Wang, Q. Zhang, Inorg. Chim. Acta, 2018, 469, 593; DOI: https://doi.org/10.1016/j.ica.2017.09.056.

    Article  CAS  Google Scholar 

  16. M. He, F. Du, W.-Y. Zhang, Q.-Y. Yi, Y.-J. Wang, H. Yin, L. Bai, Y.-Y. Gu, Y.-J. Liu, Polyhedron, 2019, 165, 97; DOI: https://doi.org/10.1016/j.poly.2019.03.015.

    Article  CAS  Google Scholar 

  17. A. S. Gazizov, A. V. Smolobochkin, E. A. Kuznetsova, D. S. Abdullaeva, A. R. Burilov, M. A. Pudovik, A. D. Voloshina, V. V. Syakaev, A. P. Lyubina, S. K. Amerhanova, J. K. Voronina, Molecules, 2021, 26, 4432; DOI: https://doi.org/10.3390/molecules26154432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Anand, A. Muthusamy, J. Mol. Struct., 2018, 1155, 349; DOI: https://doi.org/10.1016/j.molstruc.2017.11.010.

    Article  CAS  Google Scholar 

  19. I. V. Ershova, A. V. Piskunov, V. K. Cherkasov, Russ. Chem. Rev., 2020, 89, 1157; DOI: https://doi.org/10.1070/RCR4957.

    Article  CAS  Google Scholar 

  20. D. S. Yambulatov, S. A. Nikolaevskii, K. A. Babeshkin, N. N. Efimov, J. K. Voronina, A. A. Starikova, A. S. Goloveshkin, M. A. Kiskin, I. L. Eremenko, Russ. Chem. Bull., 2022, 71, 1385; DOI: https://doi.org/10.1007/s11172-022-3544-9.

    Article  CAS  Google Scholar 

  21. A. V. Maleeva, O. Y. Trofimova, I. V. Ershova, K. V. Arsenyeva, K. I. Pashanova, I. A. Yakushev, A. V. Cherkasov, R. R. Aysin, A. V. Piskunov, Russ. Chem. Bull., 2022, 71, 1441; DOI: https://doi.org/10.1007/s11172-022-3550-y.

    Article  CAS  Google Scholar 

  22. M. P. Shurygina, M. Y. Zakharina, M. A. Baten’kin, A. N. Konev, A. S. Shavyrin, E. A. Chelnokov, N. Y. Shushunova, M. V. Arsenyev, S. A. Chesnokov, G. A. Abakumov, Eur. Polym. J., 2020, 127, 109573; DOI: https://doi.org/10.1016/j.eurpolymj.2020.109573.

    Article  Google Scholar 

  23. M. A. Zherebtsov, E. R. Zhiganshina, N. A. Lenshina, R. S. Kovylin, E. V. Baranov, N. Y. Shushunova, M. P. Shurygina, M. V. Arsenyev, S. A. Chesnokov, V. K. Cherkasov, Russ. Chem. Bull., 2021, 70, 780; DOI: https://doi.org/10.1007/s11172-021-3151-1.

    Article  CAS  Google Scholar 

  24. E. V. Kolyakina, D. F. Grishin, Russ. Chem Rev., 2011, 80, 683; DOI: https://doi.org/10.1070/RC2011v080n07ABEH004172.

    Article  CAS  Google Scholar 

  25. S. N. Mensov, G. A. Abakumov, M. V. Arsenyev, M. A. Baten’kin, S. A. Chesnokov, A. N. Konev, Y. V. Polushtaytsev, M. P. Shurygina, M. Y. Zakharina, J. Appl. Polym. Sci., 2020, 137, 48976; DOI: https://doi.org/10.1002/app.48976.

    Article  CAS  Google Scholar 

  26. V. K. Cherkasov, G. A. Abakumov, A. S. Shavyrin, V. V. Kuz’michev, E. V. Baranov, I. V. Smolyaninov, V. A. Kuropatov, Asian J. Org. Chem., 2015, 4, 446; DOI: https://doi.org/10.1002/ajoc.201500005.

    Article  CAS  Google Scholar 

  27. T. N. Kocherova, N. O. Druzhkov, A. S. Shavyrin, M. V. Arsenyev, E. V. Baranov, V. A. Kuropatov, V. K. Cherkasov, Russ. Chem. Bull., 2021, 70, 916; DOI: https://doi.org/10.1007/s11172-021-3167-6.

    Article  CAS  Google Scholar 

  28. T. N. Kocherova, N. O. Druzhkov, K. A. Martyanov, A. S. Shavyrin, M. V. Arsenyev, T. I. Kulikova, E. V. Baranov, V. A. Kuropatov, V. K. Cherkasov, Russ. Chem. Bull., 2020, 69, 2383; DOI: https://doi.org/10.1007/s11172-020-3051-9.

    Article  CAS  Google Scholar 

  29. N. Vân Anh, R. M. Williams, Photochem. Photobiol. Sci., 2012, 11, 957; DOI: https://doi.org/10.1039/C2PP05378K.

    Article  PubMed  Google Scholar 

  30. A. E. Tarakanova, M. A. Zherebtsov, M. V. Arsenyev, E. V. Baranov, S. A. Chesnokov, V. K. Cherkasov, Mendeleev Commun., 2022, 32, 540; DOI: https://doi.org/10.1016/j.mencom.2022.07.035.

    Article  CAS  Google Scholar 

  31. S. V. Norkov, E. V. Baranov, M. V. Arsenyev, V. A. Kuropatov, V. K. Cherkasov, Russ. Chem. Bull., 2022, 71, 1488; DOI: https://doi.org/10.1007/s11172-022-3555-6.

    Article  CAS  Google Scholar 

  32. S. V. Norkov, M. P. Shurygina, A. S. Shavyrin, R. V. Rumyantsev, V. A. Kuropatov, V. K. Cherkasov, Russ. Chem. Bull., 2022, 71, 114; DOI: https://doi.org/10.1007/s11172-022-3384-7.

    Article  CAS  Google Scholar 

  33. L. Y. Ukhin, L. G. Kuz’mina, D. V. Alexeenko, L. V. Belousova, T. N. Gribanova, A. S. Morkovnik, E. N. Shepelenko, G. S. Borodkin, O. I. Dmitrieva, V. A. Podshibyakin, Russ. Chem. Bull., 2021, 70, 1368; DOI: https://doi.org/10.1007/s11172-021-3225-0.

    Article  CAS  Google Scholar 

  34. M. A. Zherebtsov, M. V. Arsenyev, E. V. Baranov, S. A. Chesnokov, V. K. Cherkasov, Mendeleev Commun., 2021, 31, 268; DOI: https://doi.org/10.1016/j.mencom.2021.03.042.

    Article  CAS  Google Scholar 

  35. M. V. Arsenyev, E. V. Baranov, A. Y. Fedorov, S. A. Chesnokov, G. A. Abakumov, Mendeleev Commun., 2015, 25, 312; DOI: https://doi.org/10.1016/j.mencom.2015.07.029.

    Article  CAS  Google Scholar 

  36. M. A. Zherebtsov, M. V. Arsenyev, S. A. Chesnokov, V. K. Cherkasov, Russ. J. Org. Chem., 2020, 56, 534; DOI: https://doi.org/10.1134/S1070428020030264.

    Article  CAS  Google Scholar 

  37. T. V. Astaf’eva, M. V. Arsenyev, R. V. Rumyantcev, G. K. Fukin, V. K. Cherkasov, A. I. Poddelsky, ACS Omega, 2020, 5, 22179; DOI: https://doi.org/10.1021/acsomega.0c02277.

    Article  PubMed  PubMed Central  Google Scholar 

  38. I. V. Smolyaninov, D. A. Burmistrova, M. V. Arsenyev, N. R. Almyasheva, E. S. Ivanova, S. A. Smolyaninova, K. P. Pashchenko, A. I. Poddel’sky, N. T. Berberova, ChemistrySelect, 2021, 6, 10609; DOI: https://doi.org/10.1002/slct.202102246.

    Article  CAS  Google Scholar 

  39. S. A. Siddiqui, U. C. Narkhede, S. S. Palimkar, T. Daniel, R. J. Lahoti, K. V. Srinivasan, Tetrahedron, 2005, 61, 3539; DOI: https://doi.org/10.1016/j.tet.2005.01.116.

    Article  CAS  Google Scholar 

  40. D. I. MaGee, M. Bahramnejad, M. Dabiri, Tetrahedron Lett., 2013, 54, 2591; DOI: https://doi.org/10.1016/j.tetlet.2013.03.008.

    Article  CAS  Google Scholar 

  41. G. Patel, A. R. Patel, S. Banerjee, New J. Chem., 2020, 44, 13295; DOI: https://doi.org/10.1039/D0NJ02527E.

    Article  CAS  Google Scholar 

  42. S. Wu, D. Zhou, F. Geng, J. Dong, L. Su, Y. Zhou, S.-F. Yin, Adv. Synth. Catal., 2021, 363, 3607; DOI: https://doi.org/10.1002/adsc.202100249.

    Article  CAS  Google Scholar 

  43. W. D. Guerra, E. Odella, M. Secor, J. J. Goings, M. N. Urrutia, B. L. Wadsworth, M. Gervaldo, L. E. Sereno, T. A. Moore, G. F. Moore, S. Hammes-Schiffer, A. L. Moore, J. Am. Chem. Soc., 2020, 142, 21842; DOI: https://doi.org/10.1021/jacs.0c10474.

    Article  CAS  PubMed  Google Scholar 

  44. K. U. Ingold, D. A. Pratt, Chem. Rev., 2014, 114, 9022; DOI: https://doi.org/10.1021/cr500226n.

    Article  CAS  PubMed  Google Scholar 

  45. I. V. Smolyaninov, O. V. Pitikova, E. S. Rychagova, E. O. Korchagina, A. I. Poddel’sky, S. A. Smolyaninova, N. T. Berberova, Russ. Chem. Bull., 2016, 65, 2861; DOI: https://doi.org/10.1007/s11172-016-1669-4.

    Article  CAS  Google Scholar 

  46. I. V. Smolyaninov, O. V. Pitikova, E. O. Korchagina, A. I. Poddel’sky, G. K. Fukin, S. A. Luzhnova, A. M. Tichkomirov, E. N. Ponomareva, N. T. Berberova, Bioorg. Chem., 2019, 89, 103003; DOI: https://doi.org/10.1016/j.bioorg.2019.103003.

    Article  CAS  PubMed  Google Scholar 

  47. I. V. Smolyaninov, D. A. Burmistrova, M. V. Arsenyev, M. A. Polovinkina, N. P. Pomortseva, G. K. Fukin, A. I. Poddel’sky, N. T. Berberova, Molecules, 2022, 27, 3169; DOI: https://doi.org/10.3390/molecules27103169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. C. Foti, J. Agric. Food Chem, 2015, 63, 8765; DOI: https://doi.org/10.1021/acs.jafc.5b03839.

    Article  CAS  PubMed  Google Scholar 

  49. W. Brand-Williams, M. E. Cuvelier, C. Berset, Food Sci. Technol., 1995, 28, 25; DOI: https://doi.org/10.1016/S0023-6438(95)80008-5.

    CAS  Google Scholar 

  50. C. Sanchez-Moreno, J. A. Larrauri, F. Saura-Calixto, J. Sci. Food Agric., 1998, 76, 270; DOI: https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9.

    Article  CAS  Google Scholar 

  51. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, Elsevier, Butterworth-Heinemann, Amsterdam, 2003.

    Google Scholar 

  52. APEX3. Bruker Molecular Analysis Research Tool, 2018, v. 2018, 7, Bruker AXS, Madison, Wisconsin, USA.

  53. Data Collection, Reduction and Correction Program, CrysAlisPro 1.171.41.93a - Software Package, Rigaku OD, 2020.

  54. SAINT Data Reduction and Correction Program, 2017, v. 8.38A, Bruker AXS, Madison, Wisconsin, USA.

  55. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  Google Scholar 

  56. G. M. Sheldrick, Acta Crystallogr. A., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

  57. G. M. Sheldrick, SHELXTL. Version 6.14. Structure Determination Software Suite, Bruker AXS, 2003, Madison, Wisconsin, USA.

    Google Scholar 

  58. G. M. Sheldrick, Acta Crystallogr. C., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

  59. G. M. Sheldrick, SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.

    Google Scholar 

  60. SCALE3 ABSPACK: Empirical Absorption Correction, CrysAlisPro 1.171. 41.93a - Software Package, Rigaku OD, 2020.

  61. M. J. Frisch, G. W. Trucks, H. B. Schlegel, Gaussian09. Revision D.01, Wallingford (CT, USA), Gaussian, 2009.

    Google Scholar 

  62. A. D. Becke, J. Chem. Phys., 1993. 98, 5648; DOI: https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  63. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., 1988, 37, 785; DOI: https://doi.org/10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  64. R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 1971, 54, 724; DOI: https://doi.org/10.1063/1.1674902.

    Article  CAS  Google Scholar 

  65. P. C. Hariharan, J. A. Pople, Theor. Chim. Acta, 1973, 28, 213; DOI: https://doi.org/10.1007/bf00533485.

    Article  CAS  Google Scholar 

  66. W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 1972, 56, 2257; DOI: https://doi.org/10.1063/1.1677527.

    Article  CAS  Google Scholar 

  67. T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von R. Schleyer, J. Comput. Chem., 1983, 4, 294; DOI: https://doi.org/10.1002/jcc.540040303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Arsenyev.

Ethics declarations

The authors declare no competing interests.

Additional information

This study was financially supported by the Russian Science Foundation (Project No. 19-73-10173-P). The studies were performed using the equipment of the Center for Collective Use “Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences” with the financial support of the Ministry of Science and Higher Education (Grant “Ensuring the Development of the Material and Technical Infrastructure of the Centers for Collective Use of Scientific Equipment,” unique identifier RF-2296.61321X0017, agreement number 075-15-2021-670).

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 9, pp. 2102–2118, September, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zherebtsov, M.A., Arsenyev, M.V., Khamaletdinova, N.M. et al. Di-tert-alkyl-substituted catechols with an imidazole substituent: synthesis, structure, and properties. Russ Chem Bull 72, 2102–2118 (2023). https://doi.org/10.1007/s11172-023-4005-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4005-9

Key words

Navigation