Skip to main content

Advertisement

Log in

Synthesis and properties of biodegradable film materials based on modified starch

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Biodegradable polymer composite materials (PCM) based on modified starch and chitosan were obtained. Starch was modified by graft polymerization with acrylamide, chitosan with enanthaldehyde with the formation of Schiff bases, which ensured the combination of polysaccharides in an aqueous solution in the pH range of 3.5–5.8. The physicochemical and structural properties, as well as the biocompatibility and biodegradability of PCM were studied. The films based on modified polysaccharides are characterized by increased strength characteristics compared to the parent components. With the weight ratio of the starch/acrylamide grafted copolymer and chitosan being equal, the ultimate tensile strength of the composite films was 65 MPa at a strain of 11%. The films completely biodegraded under the action of Aspergillus niger micromycete within 4 weeks. The composite biocompatibility was confirmed by the adhesion and growth on the films of the hTERT BJ-5ta cell line fibroblasts. The obtained composite is promising as a packaging and biomedical material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dey, C. V. Dhumal, P. Sengupta, A. Kumar, N. K. Pramanik, T. Alam, J. Food Sci. Technol., 2021, 58, 3251; DOI: https://doi.org/10.1007/s13197-020-04885-6.

    Article  CAS  PubMed  Google Scholar 

  2. R. Geyer, J. R. Jambeck, K. L. Law, Science Adv., 2017, 3; DOI: https://doi.org/10.1126/sciadv.1700782.

  3. A. Kichu, M. Devi, in Handbook of Solid Waste Management, Eds C. Baskar, S. Ramakrishna, S. Baskar, R. Sharma, A. Chinnappan, R. Sehrawat, Springer, Singapore, 2020; DOI: https://doi.org/10.1007/978-981-15-7525-9_50-1.

  4. H. Ritchie, M. Roser, Plastic Pollution, Published online at OurWorldInData.org; Retrieved from: https://ourworldindata.org/plastic-pollution, 2018.

  5. Z. Akdogan, B. Guven, Environ. Pollut., 2019, 254, 113011; DOI: https://doi.org/10.1016/j.envpol.2019.113011.

    Article  CAS  PubMed  Google Scholar 

  6. W. Wang, J. Ge, X. Yu, H. Li, Sci. Total Environ., 2020, 708, 134841; DOI: https://doi.org/10.1016/j.scitotenv.2019.134841.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Zhou, J. Wang, M. Zou, Z. Jia, S. Zhou, Y. Li, Sci. Total Environ., 2021, 780, 146546; DOI: https://doi.org/10.1016/j.scitotenv.2020.141368.

    Article  Google Scholar 

  8. E. Curren, C. P. Leaw, P. T. Lim, S. Y. Leong, Front. Bioeng. Biotechnol., 2020, 8, 1390; DOI: https://doi.org/10.3389/fbioe.2020.562760.

    Article  Google Scholar 

  9. J. J. Guo, X. P. Huang, L. Xiang, Y. Z. Wang, Y. W. Li, H. Li, Q. Y. Cai, C. H. Mo, M. H. Wong, Environ. Int., 2020, 146, 105263; DOI: https://doi.org/10.1016/j.envint.2019.105263.

    Article  Google Scholar 

  10. A. Ragusa, A. Svelato, C. Santacroce, P. Catalano, V. Notarstefano, O. Carnevali, F. Papa, M. C. A. Rongiolett, F. Baiocco, S. Draghi, E. D’Amore, D. Rinaldo, M. Matta, E. Giorgini, Environ. Int., 2021, 146, 106274; DOI: https://doi.org/10.1016/j.envint.2020.106274.

    Article  CAS  PubMed  Google Scholar 

  11. C. Wang, J. Zhao, B. Xing, J. Hazard. Mater., 2021, 407, 124357; DOI: https://doi.org/10.1016/j.jhazmat.2020.124357.

    Article  CAS  PubMed  Google Scholar 

  12. A. Alfaro-Núñez, D. Astorga, L. Cáceres-Farías, L. Bastidas, C. S. Villegas, K. C. Macay, J. H. Christensen, Sci. Rep., 2021, 11, 6424; DOI: https://doi.org/10.1038/s41598-021-85939-3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. H. Ma, S. Pu, S. Liu, Y. Bai, S. Mandal, B. Xing, Environ. Pollut., 2020, 261, 114089; DOI: https://doi.org/10.1016/j.envpol.2020.114089.

    Article  CAS  PubMed  Google Scholar 

  14. K. D. Cox, G. A. Covernton, H. L. Davies, J. F. Dower, F. Juanes, S. E. Dudas, Environ. Sci. Technol., 2019, 53, 12, 7068; DOI: https://doi.org/10.1021/acs.est.9b01517.

    Article  Google Scholar 

  15. L. An, Q. Liu, Y. Deng, W. Wu, Y. Gao, W. Ling, in Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges, Eds D. He, Y. Luo, Cham, Switzerland, Springer, 2020, 471; DOI: https://doi.org/10.1007/978-3-030-56271-7.

  16. V. Stock, L. Böhmert, E. Lisicki, R. Block, J. Cara-Carmona, L. K. Pack, R. Selb, D. Lichtenstein, L. Voss, C. J. Henderson, E. Zabinsky, H. Sieg, A. Braeuning, A. Lampen, Arch. Toxicol., 2019, 93, 1817; DOI: https://doi.org/10.1007/s00204-019-02478-7.

    Article  CAS  PubMed  Google Scholar 

  17. G. F. Schirinzi, I. Pérez-Pomeda, J. Sanchís, C. Rossini, M. Farré, D. Barceló, Environ. Res., 2017, 159, 579; DOI: https://doi.org/10.1016/j.envres.2017.08.04.

    Article  CAS  PubMed  Google Scholar 

  18. M. Hu, D. Palić, Redox Biol., 2020, 37, 101620; DOI: https://doi.org/10.1016/j.redox.2020.101620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. N. Alvarado, R. L. Abarca, C. Linares-Flores, Polymers (Basel), 2021, 13, 1737; DOI: https://doi.org/10.3390/polym13111737.

    Article  CAS  PubMed  Google Scholar 

  20. M. Vilar, Starch-Based Materials in Food Packaging. Processing, Characterization and Applications, Academic Press, 2017, 336 p.

  21. F. Haq, H. Yu, L. Wang, L. Teng, M. Haroon, R. U. Khan, S. Mehmood, Bilal-Ul-Amin, R. S. Ullah, A. Khan, A. Nazir, Carbohydr. Res., 2019, 476, 12; DOI: https://doi.org/10.1016/j.carres.2019.02.007.

    Article  CAS  PubMed  Google Scholar 

  22. R. Colussi, V. Z. Pinto, S. L. M. El Halal, B. Biduski, L. Prietto, D. D. Castilhos, E. D. R. Zavareze, A. R. G. Dias, Food Chem., 2017, 221, 1614; DOI: https://doi.org/10.1016/j.foodchem.2016.10.129.

    Article  CAS  PubMed  Google Scholar 

  23. B. Biduski, F. T. D. Silva, W. M. D. Silva, S. L. M. E. Halal, V. Z. Pinto, A. R. G. Dias, E. D. R. Zavareze, Food Chem., 2017, 214, 53; DOI: https://doi.org/10.1016/j.foodchem.2016.07.039.

    Article  CAS  PubMed  Google Scholar 

  24. M. Pirooz, A. H. Navarchian, G. Emtiazi, J. Polym. Environ., 2017, 26, 1702; DOI: https://doi.org/10.1007/s10924-017-1056-8.

    Article  Google Scholar 

  25. Z. N. Nysenko, E. E. Said-Galiev, G. G. Nikiforova, M. I. Buzin, A. A. Glazkov, M. M. Il’in, G. A. Belyaev, V. V. Rusak, A. M. Sakharov, Russ. Chem. Bull., 2022, 71, 1770; DOI: https://doi.org/10.1007/s11172-022-3588-x.

    Article  CAS  Google Scholar 

  26. S. G. Kou, L. Peters, M. Mucalo, Carbohydr. Polym., 2022, 282, 119132; DOI: https://doi.org/10.1016/j.carbpol.2022.119132.

    Article  CAS  PubMed  Google Scholar 

  27. M. Flórez, E. Guerra-Rodríguez, P. Cazón, M. Vázquez, Food Hydrocoll., 2022, 124, 107328; DOI: https://doi.org/10.1016/j.foodhyd.2021.107328.

    Article  Google Scholar 

  28. K. V. Apryatina, E. K. Tkachuk, L. A. Smirnova, Carbohydr. Polym., 2020, 235, 115954; DOI: https://doi.org/10.1016/j.carbpol.2020.115954.

    Article  PubMed  Google Scholar 

  29. A. B. Shipovskaya, O. N. Malinkina, N. O. Gegel, I. V. Zudina, T. N. Lugovitskaya, Russ. Chem. Bull., 2021, 70, 1765; DOI: https://doi.org/10.1007/s11172-021-3281-5.

    Article  CAS  Google Scholar 

  30. I. M. Lipatova, N. V. Losev, L. I. Makarova, J. A. Rodicheva, V. A. Burmistrov, Carbohydr. Polym., 2020, 239, 116245; DOI: https://doi.org/10.1016/j.carbpol.2020.116245.

    Article  CAS  PubMed  Google Scholar 

  31. A. E. Mochalova, N. V. Zaborshchikova, A. A. Knyazev, L. A. Smirnova, Yu. D. Semchikov, V. A. Izvozchikova, V. V. Medvedeva, Polym. Sci. Ser. A, 2006, 48, 918; DOI: https://doi.org/10.1134/S0965545X06090069.

    Article  Google Scholar 

  32. S.-C. Hsu, T.-M. Don, W.-Y. Chiu, Polym., Degrad. Stab., 2002, 75, 73; DOI: https://doi.org/10.1016/S0141-3910(01)00205-1.

    Article  CAS  Google Scholar 

  33. C. Yu, X. Kecen, Q. Xiaosai, in Biopolymer Grafting: Synthesis and Properties, Ed. V. K. Thakur, Elsevier, 2018; DOI: https://doi.org/10.1016/C2015-0-06910-6.

  34. V. F. Smirnov, L. A. Smirnova, A. E. Mochalova, D. V. Kryazhev, N. E. Tsverova, K. A. Zotov, Biotekhnologiya [Biotechnology], 2011, 4, 47–56 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Apryatina.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 23-13-00342).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on the materials of the XVIII International Research and Development Conference “Novel Polymeric Composites. Mikitaev Readings” (July 4–9, 2022; p. Elbrus, Kabardino-Balkarian Republic, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 6, pp. 1405–1413, June, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachalova, E.A., Apryatina, K.V., Mochalova, A.E. et al. Synthesis and properties of biodegradable film materials based on modified starch. Russ Chem Bull 72, 1405–1413 (2023). https://doi.org/10.1007/s11172-023-3915-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3915-x

Key words

Navigation