Skip to main content
Log in

Specific features of the Mannich synthesis of N-(dialkylaminomethyl)(meth)acrylamides based on higher amines

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The influence of the structure of higher secondary linear amines (di-n-butylamine (DBA), di-n-octylamine (DOA)), amides (methacrylamide (MAA), acrylamide (AA)) and additives of surfactants of different nature on the synthesis of promising cationic monomers, higher N-(dialkylaminomethyl)(meth)acrylamides, via the Mannich reaction in two-phase water-organic systems was determined. At the initial equimolar ratio of DBA, formaldehyde, and MAA under mild conditions, a high yield of the target monomer (96%) is achieved, and the introduction of a surfactant leads to the initial acceleration of the reaction but does not almost increase the yield. This is due to the manifestation of the effect of “micellar autocatalysis” in the absence of surfactants, since the formed amphi-philic aminoamide has surfactant properties. When MAA is replaced by AA, the yield of the aminoamide monomer does not exceed 80% because of the side formation of secondary amine addition products to the C=C bonds of the starting or formed amide. When using DOA, the reaction does not proceed to an appreciable extent because of steric shielding of the reaction center in the aminomethylating intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Biersacka, K. Ahmedb, S. Padhyec, R. Schoberta, J. Expert Opin. Drug Discov., 2017, 13, 1; DOI: https://doi.org/10.1080/17460441.2018.1403420.

    Article  Google Scholar 

  2. S. Bala, N. Sharma, A. Kajal, Int. J. Med. Chem., 2014, 2014; DOI: https://doi.org/10.1155/2014/191072.

  3. K. A. Karpenko, T. M. Iliyasov, A. N. Fakhrutdinov, A. S. Akulinin, M. N. Elinson, A. N. Vereshchagin, Russ. Chem. Bull., 2022, 72, 1278; DOI: https://doi.org/10.1007/s11172-022-3531-1.

    Article  Google Scholar 

  4. I. A. Dvornikova, E. V. Buravlev, O. G. Shevchenko, I. Yu. Chukicheva, A. V. Kutchin, Russ. Chem. Bull., 2021, 70, 2185; DOI: https://doi.org/10.1007/s11172-021-3330-0.

    Article  CAS  Google Scholar 

  5. O. A. Kazantsev, G. I. Volkova, I. V. Prozorova, I. V. Litvinets, D. V. Orekhov, S. I. Samodurova, D. M. Kamorin, A. A. Moikin, A. S. Medzhibovskii, Petroleum Chemistry, 2016, 56, 68; DOI: https://doi.org/10.1134/S0965544115060079.

    Article  CAS  Google Scholar 

  6. S. Li, Y. Liao, G. Li, Wat. Sci. Tech., 2017, 76, 694; DOI: https://doi.org/10.2166/wst.2017.260.

    Article  CAS  Google Scholar 

  7. A. Roointan, J. Farzanfar, S. Mohammadi-Samani, A. Behzad-Behbahani, F. Farjadian, Int. J. Pharm., 2018, 552, 301; DOI: https://doi.org/10.1016/j.ijpharm.2018.10.001.

    Article  CAS  PubMed  Google Scholar 

  8. O. A. Kazantsev, I. R. Arifullin, A. A. Moikin, Egypt. J. Petrol., 2021, 30, No. 3, 21; DOI: https://doi.org/10.1016/j.ejpe.2021.06.002.

    Article  Google Scholar 

  9. US Pat. 20210171694; 2021; https://worldwide.espacenet.com/patent/search/family/069182106/publication/US2021171694A1?q=pn%3DUS2021171694A1.

  10. US Pat. 7182136; 2007; https://worldwide.espacenet.com/patent/search/family/033552484/publication/US7182136B2?q=pn%3DUS7182136B2.

  11. W. Chaibi, A. Ziane, Z. Benzehaim, Mat. Sci. Appl. Chem., 2016, 33, 40; DOI: https://doi.org/10.1515/msac-2016-0008.

    Google Scholar 

  12. O. A. Kazantsev, A. P. Sivokhin, K. V. Shirshin, O. P. Gur’yanova, S. I. Samodurova, Russ. J. Appl. Chem., 2010, 83, 1062; DOI: https://doi.org/10.1134/S1070427210060261.

    Article  CAS  Google Scholar 

  13. S. Khaksar, E. Fattahi, E. Fattahi, Tetrahedron Lett., 2011, 52, 5943; DOI: https://doi.org/10.1016/j.tetlet.2011.08.121.

    Article  CAS  Google Scholar 

  14. H. An, C. Wang, W. Li, Polym. Bull., 2011, 67, 141; DOI: https://doi.org/10.1007/s00289-011-0465-4.

    Article  CAS  Google Scholar 

  15. A. Alzahrani, S. Mirallai, B. Chalmers, P. McArdlea, F. Aldabbagh, Org. Biomol. Chem., 2018, 16, 4108; DOI: https://doi.org/10.1039/C8OB00811F.

    Article  CAS  PubMed  Google Scholar 

  16. M. Bartoli, B. Sebille, R. Audebert, Macrom. Chem., 1975, 176, 2579; DOI: https://doi.org/10.1002/macp.1975.021760910.

    Article  CAS  Google Scholar 

  17. RF Patent 2104998, 1998; https://worldwide.espacenet.com/patent/search/family/02016236/publication/RU2104998C1?q=pn%3DRU2104998C1.

  18. O. A. Kazantsev, I. R. Arifullin, M. V. Savinova, React. Chem. Eng., 2020, 5, 1791; DOI: https://doi.org/10.1039/D0RE00135J.

    Article  CAS  Google Scholar 

  19. I. R. Arifullin, K. V. Shirshin, M. V. Savinova, Polym. Sci.D, 2020, 13, 6; DOI: https://doi.org/10.1134/S1995421220010049.

    Article  CAS  Google Scholar 

  20. Spectral Database for Organic Compounds SDBS; https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi.

  21. F. F. Blicke, Organic Reactions, 2011, 1, 303; DOI: https://doi.org/10.1002/0471264180.or001.10.

    Google Scholar 

  22. M. Tramontini, Synthesis, 1973, 12, 703.

    Article  Google Scholar 

  23. M. Tramontini, L. Angiolini, Tetrahedron, 1990, 46, 1791; DOI: https://doi.org/10.1016/S0040-4020(01)89752-0.

    Article  CAS  Google Scholar 

  24. G. Roman, Eur. J. Med. Chem., 2015, 89, 743; DOI: https://doi.org/10.1016/j.ejmech.2014.10.076.

    Article  CAS  PubMed  Google Scholar 

  25. P. Becher, J. Disper. Sci. Technol., 1984, 5, 81; DOI: https://doi.org/10.1080/01932698408943210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Arifullin.

Additional information

This work was carried out in terms of state assignment in the sphere of scientific activity (theme No. FSWE-2020-0008, study of micellar catalysis effect) and financially supported by the grant of the President of the Russian Federation for young scientists and post-graduate students performing promising research and developments on priority directions of modernization of the Russian economy (SP-4035.2021.1, studies of the influence of the reagent structure on the Mannich reaction).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izyestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 5, pp. 1178–1185, May, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arifullin, I.R., Kazantsev, O.A., Savinova, M.V. et al. Specific features of the Mannich synthesis of N-(dialkylaminomethyl)(meth)acrylamides based on higher amines. Russ Chem Bull 72, 1178–1185 (2023). https://doi.org/10.1007/s11172-023-3887-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3887-x

Key words

Navigation