Skip to main content
Log in

Chemistry of nuclear spin isomers of the molecules: from the past of the Universe to emerging technologies

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The discovery of nuclear spin isomerism of molecules became an important step toward establishing the quantum mechanical picture of the Universe. Spin isomers have unique properties, which make their study very promising, despite the fact that the production of spin isomers in required quantities is still an unsolved problem. In this review, wide possibilities of the application of spin isomers in the areas from mechanistic studies of catalytic reactions to biomedical imaging and investigation of the past of the Universe using predominantly the most known spin isomers, ortho- and parahydrogen, as examples are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Election of the Full Members (Academicians), Corresponding Members, and Foreign Members of the Russian Academy of Sciences, Russ. Chem. Bull., 2022, 71, 1559; DOI: https://doi.org/10.1007/s11172-022-3565-4.

    Article  Google Scholar 

  2. A. Farkas, Orthohydrogen, Parahydrogen and Heavy Hydrogen, Cambridge University Press, Cambridge, 1935, 215 pp.

    Google Scholar 

  3. L. Lloyd, Handbook of Industrial Catalysts, Springer New York, 2011, 490 pp.; DOI: https://doi.org/10.1007/978-0-387-49962-8.

    Book  Google Scholar 

  4. I. Horiuti, M. Polanyi, Trans. Faraday Soc., 1934, 30, 1164; DOI: https://doi.org/10.1039/tf9343001164.

    Article  Google Scholar 

  5. A. Farkas, L. Farkas, J. Am. Chem. Soc., 1938, 60, 22; DOI: https://doi.org/10.1021/ja01268a006.

    Article  CAS  Google Scholar 

  6. A. Farkas, Trans. Faraday Soc., 1939, 35, 906; DOI: https://doi.org/10.1039/TF9393500906.

    Article  CAS  Google Scholar 

  7. A. Farkas, L. Farkas, E. K. Rideal, Proc. R. Soc. London. Ser. A, 1934, 146, 630; DOI: https://doi.org/10.1098/rspa.1934.0177.

    Article  CAS  Google Scholar 

  8. C. R. Bowers, D. P. Weitekamp, Phys. Rev. Lett., 1986, 57, 2645; DOI: https://doi.org/10.1103/PhysRevLett.57.2645.

    Article  CAS  PubMed  Google Scholar 

  9. C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc., 1987, 109, 5541; DOI: https://doi.org/10.1021/ja00252a049.

    Article  CAS  Google Scholar 

  10. C. R. Bowers, in eMagRes, Eds R. K. Harris, R. L. Wasylishen, John Wiley & Sons Ltd, 2007, p. 750; DOI: https://doi.org/10.1002/9780470034590.emrstm0489.

  11. I. V. Koptyug, K. V. Kovtunov, S. R. Burt, M. S. Anwar, C. Hilty, S.-I. Han, A. Pines, R. Z. Sagdeev, J. Am. Chem. Soc., 2007, 129, 5580; DOI: https://doi.org/10.1021/ja068653o.

    Article  CAS  PubMed  Google Scholar 

  12. K. V. Kovtunov, I. E. Beck, V. I. Bukhtiyarov, I. V. Koptyug, Angew. Chem., Int. Ed., 2008, 47, 1492; DOI: https://doi.org/10.1002/anie.200704881.

    Article  CAS  Google Scholar 

  13. D. B. Burueva, V. P. Kozinenko, S. V. Sviyazov, L. M. Kovtunova, V. I. Bukhtiyarov, E. Y. Chekmenev, O. G. Salnikov, K. V. Kovtunov, I. V. Koptyug, Appl. Magn. Reson., 2022, 53, 653; DOI: https://doi.org/10.1007/s00723-021-01377-4.

    Article  CAS  Google Scholar 

  14. K. V. Kovtunov, A. S. Romanov, O. G. Salnikov, D. A. Barskiy, E. Y. Chekmenev, I. V. Koptyug, Tomography, 2016, 2, 49; DOI: https://doi.org/10.18383/j.tom.2016.00112.

    Article  PubMed  PubMed Central  Google Scholar 

  15. E. V. Pokochueva, D. B. Burueva, O. G. Salnikov, I. V. Koptyug, ChemPhysChem, 2021, 22, 1421; DOI: https://doi.org/10.1002/cphc.202100153.

    Article  CAS  PubMed  Google Scholar 

  16. I. V. Skovpin, L. M. Kovtunova, A. V. Nartova, R. I. Kvon, V. I. Bukhtiyarov, I. V. Koptyug, Catal. Sci. Technol., 2022, 12, 3247; DOI: https://doi.org/10.1039/d1cy02258j.

    Article  CAS  Google Scholar 

  17. D. B. Burueva, S. V. Sviyazov, F. Huang, I. P. Prosvirin, A. V. Bukhtiyarov, V. I. Bukhtiyarov, H. Liu, I. V. Koptyug, J. Phys. Chem. C, 2021, 125, 27221; DOI: https://doi.org/10.1021/acs.jpcc.1c08424.

    Article  CAS  Google Scholar 

  18. D. B. Burueva, L. M. Kovtunova, V. I. Bukhtiyarov, K. V. Kovtunov, I. V. Koptyug, Chem. Eur. J., 2019, 25, 1420; DOI: https://doi.org/10.1002/chem.201803515.

    Article  CAS  PubMed  Google Scholar 

  19. J. A. Osborn, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc. A, 1966, 1711; DOI: https://doi.org/10.1039/j19660001711.

  20. P. A. Chaloner, M. A. Esteruelas, F. Joó, L. A. Oro, Homogeneous Hydrogenation, Springer Netherlands, Dordrecht, 1994, 290 pp.; DOI: https://doi.org/10.1007/978-94-017-1791-5.

    Book  Google Scholar 

  21. E. V. Pokochueva, D. B. Burueva, L. M. Kovtunova, A. V. Bukhtiyarov, A. Y. Gladky, K. V. Kovtunov, I. V. Koptyug, V. I. Bukhtiyarov, Faraday Discuss., 2021, 229, 161; DOI: https://doi.org/10.1039/C9FD00138G.

    Article  CAS  PubMed  Google Scholar 

  22. M. G. Pravica, D. P. Weitekamp, Chem. Phys. Lett., 1988, 145, 255; DOI: https://doi.org/10.1016/0009-2614(88)80002-2.

    Article  CAS  Google Scholar 

  23. S. B. Duckett, N. J. Wood, Coord. Chem. Rev., 2008, 252, 2278; DOI: https://doi.org/10.1016/J.CCR.2008.01.028.

    Article  CAS  Google Scholar 

  24. J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc., 1997, 31, 293; DOI: https://doi.org/10.1016/S0079-6565(97)00007-1.

    Article  Google Scholar 

  25. S. B. Duckett, C. J. Sleigh, Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, 71; DOI: https://doi.org/10.1016/S0079-6565(98)00027-2.

    Article  CAS  Google Scholar 

  26. K. V. Kovtunov, D. B. Burueva, S. V. Sviyazov, O. G. Salnikov, B. M. Goodson, E. Y. Chekmenev, I. V. Koptyug, Russ. Chem. Bull., 2021, 70, 2382; DOI: https://doi.org/10.1007/s11172-021-3357-2.

    Article  CAS  Google Scholar 

  27. P. Jurt, O. G. Salnikov, T. L. Gianetti, N. V. Chukanov, M. G. Baker, G. Le Corre, J. E. Borger, R. Verel, S. Gauthier, O. Fuhr, K. V. Kovtunov, A. Fedorov, D. Fenske, I. V. Koptyug, H. Grützmacher, Chem. Sci., 2019, 10, 7937; DOI: https://doi.org/10.1039/c9sc02683e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. Sellies, R. L. E. G. Aspers, M. C. Feiters, F. P. J. T. Rutjes, M. Tessari, Angew. Chem., Int. Ed., 2021, 60, 26954; DOI: https://doi.org/10.1002/anie.202109588.

    Article  CAS  Google Scholar 

  29. P. J. Carson, C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc., 2001, 123, 11821; DOI: https://doi.org/10.1021/ja010572z.

    Article  CAS  PubMed  Google Scholar 

  30. V. V. Zhivonitko, A. I. Svyatova, K. V. Kovtunov, I. V. Koptyug, Annu. Reports NMR Spectrosc., 2018, 95, 83; DOI: https://doi.org/10.1016/bs.arnmr.2018.06.001.

    Article  CAS  Google Scholar 

  31. L. F. Gladden, F. J. R. Abegão, C. P. Dunckley, D. J. Holland, M. H. Sankey, A. J. Sederman, Catal. Today, 2010, 155, 157; DOI: https://doi.org/10.1016/j.cattod.2009.10.012.

    Article  CAS  Google Scholar 

  32. A. A. Lysova, I. V. Koptyug, Chem. Soc. Rev., 2010, 39, 4585; DOI: https://doi.org/10.1039/b919540h.

    Article  CAS  PubMed  Google Scholar 

  33. K. V. Kovtunov, V. V. Zhivonitko, I. V. Skovpin, D. A. Barskiy, I. V. Koptyug, in Top. Curr. Chem., Ed. L. Kuhn, 2013, p. 123; DOI: https://doi.org/10.1007/128_2012_371.

  34. S. Stapf, S.-I. Han, NMR Imaging in Chemical Engineering, Wiley-VCH, Weinheim, 2005, 608 pp.; DOI: https://doi.org/10.1002/3527607560.

    Book  Google Scholar 

  35. E. H. L. Yuen, A. J. Sederman, F. Sani, P. Alexander, L. F. Gladden, Chem. Eng. Sci., 2003, 58, 613; DOI: https://doi.org/10.1016/S0009-2509(02)00586-9.

    Article  CAS  Google Scholar 

  36. I. V. Koptyug, A. A. Lysova, A. V. Kulikov, V. A. Kirillov, V. N. Parmon, R. Z. Sagdeev, Appl. Catal. A Gen., 2004, 267, 143; DOI: https://doi.org/10.1016/j.apcata.2004.02.040.

    Article  CAS  Google Scholar 

  37. A. A. Lysova, I. V. Koptyug, A. V. Kulikov, V. A. Kirillov, R. Z. Sagdeev, V. N. Parmon, Chem. Eng. J., 2007, 130, 101; DOI: https://doi.org/10.1016/j.cej.2006.06.014.

    Article  CAS  Google Scholar 

  38. A. A. Lysova, A. von Garnier, E. H. Hardy, R. Reimert, I. V. Koptyug, Chem. Eng. J., 2011, 173, 552; DOI: https://doi.org/10.1016/j.cej.2011.07.074.

    Article  CAS  Google Scholar 

  39. L. Baker, M. P. Renshaw, M. D. Mantle, A. J. Sederman, A. J. Wain, L. F. Gladden, Appl. Catal. A Gen., 2018, 557, 125; DOI: https://doi.org/10.1016/j.apcata.2018.03.011.

    Article  CAS  Google Scholar 

  40. L.-S. Bouchard, S. R. Burt, M. S. Anwar, K. V. Kovtunov, I. V. Koptyug, A. Pines, Science, 2008, 319, 442; DOI: https://doi.org/10.1126/science.1151787.

    Article  CAS  PubMed  Google Scholar 

  41. V. V. Zhivonitko, V.-V. Telkki, I. V. Koptyug, Angew. Chem., Int. Ed., 2012, 51, 8054; DOI: https://doi.org/10.1002/anie.201202967.

    Article  CAS  Google Scholar 

  42. V.-V. Telkki, V. V. Zhivonitko, A. Selent, G. Scotti, J. Leppäniemi, S. Franssila, I. V. Koptyug, Angew. Chem., Int. Ed., 2014, 53, 11289; DOI: https://doi.org/10.1002/anie.201405681.

    Article  CAS  Google Scholar 

  43. J. Ulpts, W. Dreher, M. Klink, J. Thöming, Appl. Catal. A Gen., 2015, 502, 340; DOI: https://doi.org/10.1016/j.apcata.2015.06.011.

    Article  CAS  Google Scholar 

  44. J. Ulpts, L. Kiewidt, W. Dreher, J. Thöming, Catal. Today, 2018, 310, 176; DOI: https://doi.org/10.1016/j.cattod.2017.05.009.

    Article  CAS  Google Scholar 

  45. H. Ridder, C. Sinn, G. R. Pesch, J. Ilsemann, W. Dreher, J. Thöming, Rev. Sci. Instrum., 2021, 92, 043711; DOI: https://doi.org/10.1063/5.0044795.

    Article  CAS  PubMed  Google Scholar 

  46. K. V. Kovtunov, D. Lebedev, A. Svyatova, E. V. Pokochueva, I. P. Prosvirin, E. Y. Gerasimov, V. I. Bukhtiyarov, C. R. Müller, A. Fedorov, I. V. Koptyug, ChemCatChem, 2019, 11, 969; DOI: https://doi.org/10.1002/cctc.201801820.

    Article  CAS  Google Scholar 

  47. A. Svyatova, E. S. Kononenko, K. V. Kovtunov, D. Lebedev, E. Y. Gerasimov, A. V. Bukhtiyarov, I. P. Prosvirin, V. I. Bukhtiyarov, C. R. Müller, A. Fedorov, I. V. Koptyug, Catal. Sci. Technol., 2020, 10, 99; DOI: https://doi.org/10.1039/c9cy02100k.

    Article  CAS  Google Scholar 

  48. M. Callon, A. A. Malär, S. Pfister, V. Římal, M. E. Weber, T. Wiegand, J. Zehnder, M. Chávez, R. Cadalbert, R. Deb, A. Däpp, M.-L. Fogeron, A. Hunkeler, L. Lecoq, A. Torosyan, D. Zyla, R. Glockshuber, S. Jonas, M. Nassal, M. Ernst, A. Böckmann, B. H. Meier, J. Biomol. NMR, 2021, 75, 255; DOI: https://doi.org/10.1007/s10858-021-00373-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. E. Ladd, P. Bachert, M. Meyerspeer, E. Moser, A. M. Nagel, D. G. Norris, S. Schmitter, O. Speck, S. Straub, M. Zaiss, Prog. Nucl. Magn. Reson. Spectrosc., 2018, 109, 1; DOI: https://doi.org/10.1016/j.pnmrs.2018.06.001.

    Article  CAS  PubMed  Google Scholar 

  50. S. S. Zalesskiy, E. Danieli, B. Blümich, V. P. Ananikov, Chem. Rev., 2014, 114, 5641: DOI: https://doi.org/10.1021/cr400063g.

    Article  CAS  PubMed  Google Scholar 

  51. B. Blümich, J. Magn. Reson., 2019, 306, 27; DOI: https://doi.org/10.1016/j.jmr.2019.07.030.

    Article  PubMed  Google Scholar 

  52. B. Blümich, F. Casanova, S. Appelt, Chem. Phys. Lett., 2009, 477, 231; DOI: https://doi.org/10.1016/j.cplett.2009.06.096.

    Article  Google Scholar 

  53. J. W. Blanchard, D. Budker, in eMagRes, Eds R. K. Harris, R. L. Wasylishen, John Wiley & Sons Ltd, 2016, p. 1395; DOI: https://doi.org/10.1002/9780470034590.emrstm1369.

  54. P. Put, S. Pustelny, D. Budker, E. Druga, T. F. Sjolander, A. Pines, D. A. Barskiy, Anal. Chem., 2021, 93, 3226; DOI: https://doi.org/10.1021/acs.analchem.0c04738.

    Article  CAS  PubMed  Google Scholar 

  55. D. A. Barskiy, M. C. D. Tayler, I. Marco-Rius, J. Kurhanewicz, D. B. Vigneron, S. Cikrikci, A. Aydogdu, M. Reh, A. N. Pravdivtsev, J.-B. Hövener, J. W. Blanchard, T. Wu, D. Budker, A. Pines, Nat. Commun., 2019, 10, 3002; DOI: https://doi.org/10.1038/s41467-019-10787-9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. J. W. Blanchard, B. Ripka, B. A. Suslick, D. Gelevski, T. Wu, K. Münnemann, D. A. Barskiy, D. Budker, Magn. Reson. Chem., 2021, 59, 1208; DOI: https://doi.org/10.1002/mrc.5161.

    Article  CAS  PubMed  Google Scholar 

  57. D. B. Burueva, J. Eills, J. W. Blanchard, A. Garcon, R. Picazo-Frutos, K. V. Kovtunov, I. V. Koptyug, D. Budker, Angew. Chem., Int. Ed., 2020, 59, 17026; DOI: https://doi.org/10.1002/anie.202006266.

    Article  CAS  Google Scholar 

  58. S. S. Kaushik, Z. I. Cleveland, G. P. Cofer, G. Metz, D. Beaver, J. Nouls, M. Kraft, W. Auffermann, J. Wolber, H. P. McAdams, B. Driehuys, Magn. Reson. Med., 2011, 65, 1154; DOI: https://doi.org/10.1002/mrm.22697.

    Article  PubMed  Google Scholar 

  59. I. Dregely, I. C. Ruset, J. F. Mata, J. Ketel, S. Ketel, J. Distelbrink, T. A. Altes, J. P. Mugler III, G. W. Miller, F. W. Hersman, K. Ruppert, Magn. Reson. Med., 2012, 67, 943; DOI: https://doi.org/10.1002/mrm.23066.

    Article  PubMed  Google Scholar 

  60. K. V. Kovtunov, D. A. Barskiy, A. M. Coffey, M. L. Truong, O. G. Salnikov, A. K. Khudorozhkov, E. A. Inozemtseva, I. P. Prosvirin, V. I. Bukhtiyarov, K. W. Waddell, E. Y. Chekmenev, I. V. Koptyug, Chem. Eur. J., 2014, 20, 11636; DOI: https://doi.org/10.1002/CHEM.201403604.

    Article  CAS  PubMed  Google Scholar 

  61. O. G. Salnikov, A. Svyatova, L. M. Kovtunova, N. V. Chukanov, V. I. Bukhtiyarov, K. V. Kovtunov, E. Y. Chekmenev, I. V. Koptyug, Chem. Eur. J., 2021, 27, 1316; DOI: https://doi.org/10.1002/chem.202003638.

    Article  CAS  PubMed  Google Scholar 

  62. J. Svensson, S. Månsson, E. Johansson, J. S. Petersson, L. E. Olsson, Magn. Reson. Med., 2003, 50, 256; DOI: https://doi.org/10.1002/mrm.10530.

    Article  PubMed  Google Scholar 

  63. K. Golman, R. in’t Zandt, M. Thaning, Proc. Natl. Acad. Sci. USA, 2006, 103, 11270; DOI: https://doi.org/10.1073/pnas.0601319103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. J. Nelson, J. Kurhanewicz, D. B. Vigneron, P. E. Z. Larson, A. L. Harzstark, M. Ferrone, M. van Criekinge, J. W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E. J. Small, P. Munster, V. K. Weinberg, J. H. Ardenkjaer-Larsen, A. P. Chen, R. E. Hurd, L.-I. Odegardstuen, F. J. Robb, J. Tropp, J. A. Murray, Sci. Transl. Med., 2013, 5, 198ra108; DOI: https://doi.org/10.1126/scitranslmed.3006070.

    Article  PubMed  PubMed Central  Google Scholar 

  65. F. A. Gallagher, R. Woitek, M. A. McLean, A. B. Gill, R. M. Garcia, E. Provenzano, F. Riemer, J. Kaggie, A. Chhabra, S. Ursprung, J. T. Grist, C. J. Daniels, F. Zaccagna, M.-C. Laurent, M. Locke, S. Hilborne, A. Frary, T. Torheim, C. Boursnell, A. Schiller, I. Patterson, R. Slough, B. Carmo, J. Kane, H. Biggs, E. Harrison, S. S. Deen, A. Patterson, T. Lanz, Z. Kingsbury, M. Ross, B. Basu, R. Baird, D. J. Lomas, E. Sala, J. Wason, O. M. Rueda, S.-F. Chin, I. B. Wilkinson, M. J. Graves, J. E. Abraham, F. J. Gilbert, C. Caldas, K. M. Brindle, Proc. Natl. Acad. Sci. USA, 2020, 117, 2092; DOI: https://doi.org/10.1073/pnas.1913841117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. V. Z. Miloushev, K. L. Granlund, R. Boltyanskiy, S. K. Lyashchenko, L. M. DeAngelis, I. K. Mellinghoff, C. W. Brennan, V. Tabar, T. J. Yang, A. I. Holodny, R. E. Sosa, Y. W. Guo, A. P. Chen, J. Tropp, F. Robb, K. R. Keshari, Cancer Res., 2018, 78, 3755; DOI: https://doi.org/10.1158/0008-5472.CAN-18-0221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. L. Wienands, F. Theiß, J. Eills, L. Rösler, S. Knecht, G. Buntkowsky, Appl. Magn. Reson., 2022, 53, 615; DOI: https://doi.org/10.1007/s00723-021-01371-w.

    Article  CAS  Google Scholar 

  68. S. Knecht, J. W. Blanchard, D. Barskiy, E. Cavallari, L. Dagys, E. Van Dyke, M. Tsukanov, B. Bliemel, K. Münnemann, S. Aime, F. Reineri, M. H. Levitt, G. Buntkowsky, A. Pines, P. Blümler, D. Budker, J. Eills, Proc. Natl. Acad. Sci. USA, 2021, 118, e2025383118; DOI: https://doi.org/10.1073/pnas.2025383118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. F. Reineri, T. Boi, S. Aime, Nat. Commun., 2015, 6, 5858; DOI: https://doi.org/10.1038/ncomms6858.

    Article  CAS  PubMed  Google Scholar 

  70. E. Cavallari, C. Carrera, S. Aime, F. Reineri, ChemPhysChem, 2019, 20, 318; DOI: https://doi.org/10.1002/cphc.201800652.

    Article  CAS  PubMed  Google Scholar 

  71. O. G. Salnikov, N. V. Chukanov, L. M. Kovtunova, V. I. Bukhtiyarov, K. V. Kovtunov, R. V. Shchepin, I. V. Koptyug, E. Y. Chekmenev, ChemPhysChem, 2021, 22, 1389; DOI: https://doi.org/10.1002/cphc.202100156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. Lopez-Serrano, D. C. Williamson, Science, 2009, 323, 1708; DOI: https://doi.org/10.1126/science.1168877.

    Article  CAS  PubMed  Google Scholar 

  73. D. A. Barskiy, S. Knecht, A. V. Yurkovskaya, K. L. Ivanov, Prog. Nucl. Magn. Reson. Spectrosc., 2019, 114–115, 33; DOI: https://doi.org/10.1016/j.pnmrs.2019.05.005.

    Article  PubMed  Google Scholar 

  74. I. V. Skovpin, A. Svyatova, N. Chukanov, E. Y. Chekmenev, K. V. Kovtunov, I. V. Koptyug, Chem. Eur. J., 2019, 25, 12694; DOI: https://doi.org/10.1002/chem.201902724.

    Article  CAS  PubMed  Google Scholar 

  75. A. M. Olaru, M. J. Burns, G. G. R. Green, S. B. Duckett, Chem. Sci., 2017, 8, 2257; DOI: https://doi.org/10.1039/c6sc04043h.

    Article  CAS  PubMed  Google Scholar 

  76. A. Svyatova, I. V. Skovpin, N. V. Chukanov, K. V. Kovtunov, E. Y. Chekmenev, A. N. Pravdivtsev, J.-B. Hövener, I. V. Koptyug, Chem. Eur. J., 2019, 25, 8465; DOI: https://doi.org/10.1002/chem.201900430.

    Article  CAS  PubMed  Google Scholar 

  77. O. G. Salnikov, N. V. Chukanov, A. Svyatova, I. A. Trofimov, M. S. H. Kabir, J. G. Gelovani, K. V. Kovtunov, I. V. Koptyug, E. Y. Chekmenev, Angew. Chem., Int. Ed., 2021, 60, 2406; DOI: https://doi.org/10.1002/anie.202011698.

    Article  CAS  Google Scholar 

  78. S. D. Broicher, L. Filli, O. Geisseler, N. Germann, B. Zörner, P. Brugger, M. Linnebank, J. Neurol., 2018, 265, 1016; DOI: https://doi.org/10.1007/s00415-018-8796-9.

    Article  CAS  PubMed  Google Scholar 

  79. A. D. Goodman, T. R. Brown, L. B. Krupp, R. T. Schapiro, S. R. Schwid, R. Cohen, L. N. Marinucci, A. R. Blight, Lancet, 2009, 373, 732; DOI: https://doi.org/10.1016/S0140-6736(09)60442-6.

    Article  CAS  PubMed  Google Scholar 

  80. K. C. Hayes, CNS Drug Rev., 2004, 10, 295; DOI: https://doi.org/10.1111/j.1527-3458.2004.tb00029.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. J. M. Henk, K. Bishop, S. F. Shepherd, Radiother. Oncol., 2003, 66, 65; DOI: https://doi.org/10.1016/S0167-8140(02)00284-0.

    Article  PubMed  Google Scholar 

  82. H. Kawakita, J. Watanabe, R. Furusho, T. Fuse, D. C. Boice, Astrophys. J., 2005, 623, L49; DOI: https://doi.org/10.1086/429872.

    Article  CAS  Google Scholar 

  83. P. L. Chapovsky, Quantum Electron., 2019, 49, 473; DOI: https://doi.org/10.1070/qel17006.

    Article  CAS  Google Scholar 

  84. T. Hama, N. Watanabe, Chem. Rev., 2013, 113, 8783; DOI: https://doi.org/10.1021/cr4000978.

    Article  CAS  PubMed  Google Scholar 

  85. P. L. Chapovsky, L. J. F. Hermans, Annu. Rev. Phys. Chem., 1999, 50, 315; DOI: https://doi.org/10.1146/annurev.physchem.50.1.315.

    Article  CAS  PubMed  Google Scholar 

  86. Z. D. Sun, K. Takagi, F. Matsushima, Science, 2005, 310, 1938; DOI: https://doi.org/10.1126/science.1120037.

    Article  CAS  PubMed  Google Scholar 

  87. T. Kravchuk, M. Reznikov, P. Tichonov, N. Avidor, Y. Meir, A. Bekkerman, G. Alexandrowicz, Science, 2011, 331, 319; DOI: https://doi.org/10.1126/science.1200433.

    Article  CAS  PubMed  Google Scholar 

  88. D. A. Horke, Y. P. Chang, K. Długołęcki, J. Küpper, Angew. Chem., Int. Ed., 2014, 53, 11965; DOI: https://doi.org/10.1002/anie.201405986.

    Article  CAS  Google Scholar 

  89. V. V. Zhivonitko, K. V. Kovtunov, P. L. Chapovsky, I. V. Koptyug, Angew. Chem., Int. Ed., 2013, 52, 13251; DOI: https://doi.org/10.1002/anie.201307389.

    Article  CAS  Google Scholar 

  90. A. Kilaj, H. Gao, D. Rösch, U. Rivero, J. Küpper, S. Willitsch, Nat. Commun., 2018, 9, 2096; DOI: https://doi.org/10.1038/s41467-018-04483-3.

    Article  PubMed  PubMed Central  Google Scholar 

  91. V. K. Koltover, Russ. Chem. Bull., 2021, 70, 1633; DOI: https://doi.org/10.1007/s11172-021-3264-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Koptyug.

Additional information

The studies were financially supported by the Russian Science Foundation (Project No. 22-43-04426).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Igor Valentinovich Koptyug, born in 1963, Professor, Doctor of Sciences in Chemistry, leader of the scientific direction at the International Tomography Center of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk), specialist in the area of magnetic resonance imaging and spectroscopy in chemistry, elected the Corresponding Member of the Russian Academy of Sciences in 2022 (for more detailed information, see Ref. 1).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 1–19, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokochueva, E.V., Svyatova, A.I., Burueva, D.B. et al. Chemistry of nuclear spin isomers of the molecules: from the past of the Universe to emerging technologies. Russ Chem Bull 72, 1–19 (2023). https://doi.org/10.1007/s11172-023-3711-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3711-7

Key words

Navigation