Skip to main content
Log in

Synthesis of triazole-linked pseudo-oligosialic acid derivatives

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Using the CuI-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides, neuraminic acid di-, tri-, and tetrapseudosaccharides were synthesized, in which monosaccharide residues are linked by triazole intersaccharidic bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Essentials of Glycobiology, Eds A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, A. G. Darvill, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, P. H. Seeberger, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2015–2017, 823 pp.; https://www.ncbi.nlm.nih.gov/books/NBK310274

    Google Scholar 

  2. A. Varki, Glycobiology, 2017, 27, 3–49; DOI: https://doi.org/10.1093/glycob/cww086.

    Article  CAS  PubMed  Google Scholar 

  3. F. A. TroyII, Glycobiology, 1992, 2, 5–23; DOI: https://doi.org/10.1093/glycob/2.1.5.

    Article  CAS  PubMed  Google Scholar 

  4. M. Muhlenhoff, M. Eckhardt, R. Gerardy-Schahn, Curr. Opin. Struct. Biol., 1998, 8, 558–564; DOI: https://doi.org/10.1016/S0959-440X(98)80144-9.

    Article  CAS  PubMed  Google Scholar 

  5. R. Schauer, Curr. Opin. Struct. Biol., 2009, 19, 507–514; DOI: https://doi.org/10.1016/j.sbi.2009.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R. Schauer, J. P. Kamerling, Adv. Carbohydr. Chem. Biochem., 2018, 75, 1–213; DOI: https://doi.org/10.1016/bs.accb.2018.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  7. C. Sato, K. Kitajima, Adv. Carbohydr. Chem. Biochem., 2019, 76, 1–64; DOI: https://doi.org/10.1016/bs.accb.2018.09.003.

    Article  PubMed  Google Scholar 

  8. S. Kitazume, K. Kitajima, S. Inoue, F. A. TroyII, J. W. Cho, W. J. Lennarz, Y. Inoue, J. Biol. Chem., 1994, 269, 22712–22718.

    Article  CAS  PubMed  Google Scholar 

  9. P. O. Adero, H. Amarasekara, P. Wen, L. Bohé, D. Crich, Chem. Rev., 2018, 118, 8242–8284; DOI: https://doi.org/10.1021/acs.chemrev.8b00083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. Navuluri, D. Crich, in Glycochemical Synthesis: Strategies and Applications, Eds S.-C. Hung, M. M. L. Zulueta, John Wiley & Sons, Inc., Hoboken, 2016, p. 131–154.

    Chapter  Google Scholar 

  11. B. Sun, Curr. Org. Chem., 2016, 20, 1465–1476; DOI: https://doi.org/10.2174/138527282014160419234226.

    Article  CAS  Google Scholar 

  12. Y.-H. Lih, C.-Y. Wu, in Selective Glycosylations: Synthetic Methods and Catalysts, Ed. C. S. Bennett, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2017, p. 353–370.

    Google Scholar 

  13. C. De Meo, B. T. Jones, Adv. Carbohydr. Chem. Biochem., 2018, 75, 215–316; DOI: https://doi.org/10.1016/bs.accb.2018.09.005.

    Article  PubMed  Google Scholar 

  14. C. De Meo, N. Goeckner, in Comprehensive Glycoscience, Eds J. J. Barchi, S. Vidal, 2nd edition, Elsevier, Amsterdam, 2021, p. 228–266.

    Chapter  Google Scholar 

  15. S. Dedola, S. A. Nepogodiev, R. A. Field, Org. Biomol. Chem., 2007, 5, 1006–1017; DOI: https://doi.org/10.1039/b618048p.

    Article  CAS  PubMed  Google Scholar 

  16. C. Najera, J. M. Sansano, Org. Biomol. Chem., 2009, 7, 4567–4581; DOI: https://doi.org/10.1039/b913066g.

    Article  CAS  PubMed  Google Scholar 

  17. F. Santoyo-Gonzalez, F. Hernandez-Mateo, Chem. Soc. Rev., 2009, 38, 3449–3462; DOI: https://doi.org/10.1039/b909363j.

    Article  CAS  PubMed  Google Scholar 

  18. S. Cecioni, A. Imberty, S. Vidal, Chem. Rev., 2015, 115, 525–561; DOI: https://doi.org/10.1021/cr500303t.

    Article  CAS  PubMed  Google Scholar 

  19. V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen, Chem. Rev., 2016, 116, 3086–3240; DOI: https://doi.org/10.1021/acs.chemrev.5b00408.

    Article  CAS  PubMed  Google Scholar 

  20. X. P. He, Y. L. Zeng, Y. Zang, J. Li, R. A. Field, G. R. Chen, Carbohydr. Res., 2016, 429, 1–22; DOI: https://doi.org/10.1016/j.carres.2016.03.022.

    Article  CAS  PubMed  Google Scholar 

  21. V. Poonthiyil, T. K. Lindhorst, V. B. Golovko, A. J. Fairbanks, Beilstein J. Org. Chem., 2018, 14, 11–24; DOI: https://doi.org/10.3762/bjoc.14.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. K. Agrahari, P. Bose, M. K. Jaiswal, S. Rajkhowa, A. S. Singh, S. Hotha, N. Mishra, V. K. Tiwari, Chem. Rev., 2021, 121, 7638–7956; DOI: https://doi.org/10.1021/acs.chemrev.0c00920.

    Article  CAS  PubMed  Google Scholar 

  23. A. S. Kritchenkov, Yu. A. Skorik, Russ. Chem. Bull., 2017, 66, 769–781; DOI: https://doi.org/10.1007/s11172-017-1809-5.

    Article  CAS  Google Scholar 

  24. P. I. Abronina, N. M. Podvalnyy, L. O. Kononov, Russ. Chem. Bull., 2022, 71, 6–29; DOI: https://doi.org/10.1007/s11172-022-3371-z.

    Article  CAS  Google Scholar 

  25. A. A. Druzina, M. Yu. Stogniy, Russ. Chem. Bull., 2021, 70, 527–532; DOI: https://doi.org/10.1007/s11172-021-3119-1.

    Article  CAS  Google Scholar 

  26. O. S. Serkova, V. V. Glushko, I. Yu. Toropygin, V. I. Maslennikova, Russ. Chem. Bull., 2021, 70, 1328–1334; DOI: https://doi.org/10.1007/s11172-021-3219-y.

    Article  CAS  Google Scholar 

  27. A. Yu. Aksinenko, V. B. Sokolov, A. V. Gabrel’yan, V. V. Grigoriev, S. O. Bachurin, Russ. Chem. Bull., 2021, 70, 2180–2184; DOI: https://doi.org/10.1007/s11172-021-3329-6.

    Article  CAS  Google Scholar 

  28. V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596–2599; DOI: https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  29. C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem., 2002, 67, 3057–3064; DOI: https://doi.org/10.1021/jo011148j.

    Article  PubMed  Google Scholar 

  30. M. Meldal, C. W. Tornøe, Chem. Rev., 2008, 108, 2952–3015; DOI: https://doi.org/10.1021/cr0783479.

    Article  CAS  PubMed  Google Scholar 

  31. H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004–2021; DOI: https://doi.org/10.1002/1521-3773(20010601)40:11<2004::Aid-anie2004>3.0.Co;2-5.

    Article  CAS  Google Scholar 

  32. S. Muthana, H. Yu, S. Huang, X. Chen, J. Am. Chem. Soc., 2007, 129, 11918–11919; DOI: https://doi.org/10.1021/ja075736b.

    Article  CAS  PubMed  Google Scholar 

  33. S. Muthana, H. Yu, H. Cao, J. Cheng, X. Chen, J. Org. Chem., 2009, 74, 2928–2936; DOI: https://doi.org/10.1021/jo8027856.

    Article  CAS  PubMed  Google Scholar 

  34. M. Weïwer, C.-C. Chen, M. M. Kemp, R. J. Linhardt, Eur. J. Org. Chem., 2009, 2611–2620; DOI: https://doi.org/10.1002/ejoc.200900117.

  35. S. R. Hanson, T.-L. Hsu, E. Weerapana, K. Kishikawa, G. M. Simon, B. F. Cravatt, C.-H. Wong, J. Am. Chem. Soc., 2007, 129, 7266–7267; DOI: https://doi.org/10.1021/ja0724083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. T.-L. Hsu, S. R. Hanson, K. Kishikawa, S.-K. Wang, M. Sawa, C.-H. Wong, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 2614–2619; DOI: https://doi.org/10.1073/pnas.0611307104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. P. V. Chang, X. Chen, C. Smyrniotis, A. Xenakis, T. S. Hu, C. R. Bertozzi, P. Wu, Angew. Chem., Int. Ed., 2009, 48, 4030–4033; DOI: https://doi.org/10.1002/anie.200806319.

    Article  CAS  Google Scholar 

  38. J. Du, M. A. Meledeo, Z. Wang, H. S. Khanna, V. D. P. Paruchuri, K. J. Yarema, Glycobiology, 2009, 19, 1382–1401; DOI: https://doi.org/10.1093/glycob/cwp115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. Jiang, T. Zheng, A. Lopez-Aguilar, L. Feng, F. Kopp, F. L. Marlow, P. Wu, Bioconjugate Chem., 2014, 25, 698–706; DOI: https://doi.org/10.1021/bc400502d.

    Article  Google Scholar 

  40. F. D. Tropper, F. O. Andersson, S. Braun, R. Roy, Synthesis, 1992, 618–620; DOI: https://doi.org/10.1055/s-1992-26175.

  41. D. L. Flynn, R. E. Zelle, P. A. Grieco, J. Org. Chem., 1983, 48, 2424–2426; DOI: https://doi.org/10.1021/jo00162a028.

    Article  CAS  Google Scholar 

  42. M. J. Burk, J. G. Allen, J. Org. Chem., 1997, 62, 7054–7057; DOI: https://doi.org/10.1021/jo970903j.

    Article  CAS  Google Scholar 

  43. J. Gervay, T. M. Flaherty, C. Nguyen, Tetrahedron Lett., 1997, 38, 1493–1496; DOI: https://doi.org/10.1016/s0040-4039(97)00138-x.

    Article  CAS  Google Scholar 

  44. A. A. Sherman, O. N. Yudina, A. S. Shashkov, V. M. Menshov, N. E. Nifant’ev, Carbohydr. Res., 2001, 330, 445–458; DOI: https://doi.org/10.1016/s0008-6215(01)00002-7.

    Article  CAS  PubMed  Google Scholar 

  45. A. A. Sherman, O. N. Yudina, A. S. Shashkov, V. M. Menshov, N. E. Nifantiev, Carbohydr. Res., 2002, 337, 451–457; DOI: https://doi.org/10.1016/s0008-6215(02)00003-4.

    Article  CAS  PubMed  Google Scholar 

  46. A. A. Sherman, O. N. Yudina, B. S. Komarova, Y. E. Tsvetkov, S. Iacobelli, N. E. Nifantiev, Synthesis, 2005, 1783–1788; DOI: https://doi.org/10.1055/s-2005-869957.

  47. R. Kuhn, P. Lutz, D. L. MacDonald, Chem. Ber., 1966, 252, 611–617; DOI: https://doi.org/10.1002/cber.19660990235.

    Article  Google Scholar 

  48. L. O. Kononov, G. Magnusson, Acta Chem. Scand., 1998, 52, 141–144; DOI: https://doi.org/10.3891/acta.chem.scand.52-0141.

    Article  CAS  Google Scholar 

  49. L. O. Kononov, A. A. Chinarev, A. I. Zinin, C. Gobble, in Carbohydrate Chemistry: Proven Synthetic Methods, Eds G. van der Marel, J. Codee, CRC Press—Taylor & Francis Group, Boca Raton, 2014, p. 197–205; DOI: https://doi.org/10.1201/b16602-27.

    Google Scholar 

  50. S. K. Choi, S. Lee, G. M. Whitesides, J. Org. Chem., 1996, 61, 8739–8745; DOI: https://doi.org/10.1021/jo9614856.

    Article  CAS  PubMed  Google Scholar 

  51. M. Kunishima, C. Kawachi, J. Morita, K. Terao, F. Iwasaki, S. Tani, Tetrahedron, 1999, 55, 13159–13170; DOI: https://doi.org/10.1016/s0040-4020(99)00809-1.

    Article  CAS  Google Scholar 

  52. M. Kunishima, C. Kawachi, K. Hioki, K. Terao, S. Tani, Tetrahedron, 2001, 57, 1551–1558; DOI: https://doi.org/10.1016/S0040-4020(00)01137-6.

    Article  CAS  Google Scholar 

  53. M. Kunishima, K. Hioki, A. Wada, H. Kobayashi, S. Tani, Tetrahedron Lett., 2002, 43, 3323–3326; DOI: https://doi.org/10.1016/S0040-4039(02)00546-4.

    Article  CAS  Google Scholar 

  54. D. P. Temelkoff, M. Zeller, P. Norris, Carbohydr. Res., 2006, 341, 1081–1090; DOI: https://doi.org/10.1016/j.carres.2006.04.011.

    Article  CAS  PubMed  Google Scholar 

  55. W. L. F. Armarego, Purification of Laboratory Chemicals, 8th ed., Butterworth-Heinemann, 2017, 1198 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Kononov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1784–1793, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelyeva, N.Y., Shpirt, A.M., Orlova, A.V. et al. Synthesis of triazole-linked pseudo-oligosialic acid derivatives. Russ Chem Bull 71, 1784–1793 (2022). https://doi.org/10.1007/s11172-022-3590-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3590-3

Key words

Navigation