Skip to main content
Log in

Highly dispersed palladium nanoparticles supported on an imidazolium-based ionic liquid polymer: an efficient catalyst for oxidation of alcohols

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

An efficient and stable nanocatalyst for selective oxidation of alcohols was developed. It contains palladium nanoparticles, which are well distributed throughout the network of a copolymer based on an ionic liquid. The synthesized nanomaterials were characterized by various techniques such as nitrogen adsorption—desorption analysis, thermal gravimetric analysis, TEM, and FTIR spectroscopy. A high surface area and the appropriate pore size of the nanocatalyst make active metal sites accessible to reagents, whereas the presence of an ionic liquid in the network of the polymer structure creates a good environment for the leaching protection and stabilization of extremely dispersed palladium nanoparticles. The availability and abundance of active sites of highly dispersed palladium nanoparticles make the synthesized nanocatalyst very promising for oxidation of alcohols. The nanocatalyst has a number of features such as a high surface area, an appropriate size of pores with high catalytic activity, high thermal stability of the nanostructures, and low amounts of the ionic liquid needed for its synthesis. Using this nanocatalyst, carbonyl compounds were prepared from the corresponding alcohols in high yields. Additionally, the prepared nanocatalyst can easily be recovered by centrifugation after completion of the reactions and was reused five times without a significant loss in its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Urgoitia, G. Galdón, F. Churruca, R. SanMartin, M. T. Herrero, E. Domínguez, Environ. Chem. Lett., 2018, 16, 1101; DOI: https://doi.org/10.1007/s10311-018-0730-y.

    Article  CAS  Google Scholar 

  2. I. Ibrahem, M. N. Iqbal, O. Verho, A. Eivazihollagh, P. Olsén, H. Edlund, C. W. Tai, M. Norgren, E. V. Johnston, Chem. Nano Mater., 2018, 4, 71; DOI: https://doi.org/10.1002/cnma.201700309.

    CAS  Google Scholar 

  3. G. Marcì, E. García-López, L. Palmisano, Catal. Today, 2018, 315, 126; DOI: https://doi.org/10.1016/j.cattod.2018.03.038.

    Article  CAS  Google Scholar 

  4. Y. Han, M. Zhang, Y.-Q. Zhang, Z.-H. Zhang, Green Chem., 2018, 20, 4891; DOI: https://doi.org/10.1039/C8GC02611D.

    Article  CAS  Google Scholar 

  5. T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev., 2005, 105, 2329; DOI: https://doi.org/10.1021/cr050523v.

    Article  CAS  PubMed  Google Scholar 

  6. E. Gopi, E. Gravel, E. Doris, Nanoscale Adv., 2019, 1, 1181; DOI: https://doi.org/10.1039/C8NA00192H.

    Article  CAS  Google Scholar 

  7. G. Csjernyik, A. H. Éll, L. Fadini, B. Pugin, J. E. Bäckvall, J. Org. Chem., 2002, 67, 1657; DOI: https://doi.org/10.1021/jo0163750.

    Article  CAS  PubMed  Google Scholar 

  8. Z. Ma, Q. Wang, E. CBA Alegria, C. G. da Silva, M. Fátima, L. MDRS Martins, J. P. Telo, I. Correia, A. JL Pombeiro, Catalysis, 2019, 9, 424; DOI: https://doi.org/10.3390/catal9050424.

    CAS  Google Scholar 

  9. B. Heidari, M. M. Heravi, M. R. Nabid, R. Sedghi, Appl. Organomet. Chem., 2019, 33, 4934; DOI: https://doi.org/10.1002/aoc.4934.

    Article  CAS  Google Scholar 

  10. A. Ghorbani-Choghamarani, B. Tahmasbi, R. H. Hudson, A. Heidari, Micropor. Mesopor. Mater., 2019, 248, 366; DOI: https://doi.org/10.1016/j.micromeso.2019.04.061.

    Article  CAS  Google Scholar 

  11. J. Jiang, G. H. Gunasekar, S. Park, S.-H. Kim, S. Yoon, L. Piao, Mater. Res. Bull., 2018, 100, 184; DOI: https://doi.org/10.1016/j.materresbull.2017.12.018.

    Article  CAS  Google Scholar 

  12. R. P. Bagwe, L. R. Hilliard, W. Tan, Langmuir, 2006, 22, 4357; DOI: https://doi.org/10.1021/la052797j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. R. Conway, A. S. Adeleye, J. Gardea-Torresdey, A. A. Keller, Environ. Sci. Technol., 2015, 49, 2749; DOI: https://doi.org/10.1021/es504918q.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Qie, H. Yuan, C. A. Von Roemeling, Y. Chen, X. Liu, K. D. Shih, J. A. Knight, H. W. Tun, R. E. Wharen, W. Jiang, Sci. Rep., 2016, 6, 26269; DOI: https://doi.org/10.1038/srep30663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Chen, Y. Xianyu, X. Jiang, Acc. Chem. Res., 2017, 50, 310; DOI: https://doi.org/10.1021/acs.accounts.6b00506.

    Article  CAS  PubMed  Google Scholar 

  16. B. A. Moser, R. C. Steinhardt, A. P. Esser-Kahn, ACS Biomater. Sci. Eng., 2016, 3, 206; DOI: https://doi.org/10.1021/acsbiomaterials.6b00473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. G. Cui, J. Wang, S. Zhang, Chem. Soc. Rev., 2016, 45, 4307; DOI: https://doi.org/10.1039/C5CS00462D.

    Article  CAS  PubMed  Google Scholar 

  18. G. V. Lisichkin, A. Yu. Olenin, Russ. Chem. Bull., 2018, 67, 949; DOI: https://doi.org/10.1007/s11172-018-2163-y.

    Article  CAS  Google Scholar 

  19. F. Parveen, T. Patra, S. Upadhyayula, Carbohydr. Polym., 2016, 135, 280; DOI: https://doi.org/10.1039/C7NJ03146G.

    Article  CAS  PubMed  Google Scholar 

  20. Nanocatalysis in Ionic Liquids, Ed. M. H. G. Prechtl, John Wiley & Sons, Weinheim, Germany, 2017, pp. 83.

    Google Scholar 

  21. M. M. Abolghasemi, V. Yousefi, M. Piryaei, Microchim. Acta, 2015, 182, 2155; DOI: https://doi.org/10.1007/s00604-015-1553-1.

    Article  CAS  Google Scholar 

  22. Z. Wu, C. Chen, Q. Guo, B. Li, Y. Que, L. Wang, H. Wan, G. Guan, Fuel, 2016, 184, 128; DOI: https://doi.org/10.1016/j.fuel.2016.07.004.

    Article  CAS  Google Scholar 

  23. Z. Wu, C. Chen, L. Wang, H. Wan, G. Guan, Ind. Eng. Chem. Res., 2016, 55, 1833; DOI: https://doi.org/10.1021/acs.iecr.5b02906.

    Article  CAS  Google Scholar 

  24. B. Karimi, M. R. Marefat, M. Hasannia, P. F. Akhavan, F. Mansouri, Z. Artelli, F. Mohammadi, H. Vali, Chem. Cat. Chem., 2016, 8, 2508; DOI: https://doi.org/10.1002/cctc.201600630.

    CAS  Google Scholar 

  25. R. Yang, X. Wang, Y. Zhang, H. Mao, P. Lan, D. Zhou, BioResources, 2019, 14, 87; DOI: https://doi.org/10.15376/biores.14.1.87-98.

    CAS  Google Scholar 

  26. B. Karimi, Z. Naderi, M. Khorasani, H. M. Mirzaei, H. Vali, ChemCatChem., 2016, 8, 906; DOI: https://doi.org/10.1002/cctc.201501229.

    Article  CAS  Google Scholar 

  27. Q. Wang, W. Hou, Sh. Li, J. Xie, J. Li, Y. Zhou, J. Wang, Green Chem., 2017, 19, 3820; DOI: https://doi.org/10.1039/C7GC01116D.

    Article  CAS  Google Scholar 

  28. K. Lagerblom, P. Wrigstedt, J. Keskiväli, A. Parviainen, T. Repo, Chempluschem., 2016, 81, 1160; DOI: https://doi.org/10.1002/cplu.201600240.

    Article  CAS  PubMed  Google Scholar 

  29. B. L. Ryland, S. S. Stahl, Angew. Chem., Int. Ed., 2014, 53, 8824; DOI: https://doi.org/10.1002/anie.201403110.

    Article  CAS  Google Scholar 

  30. H. Wang, Y. Shi, M. Haruta, J. Huang, Appl. Catal., Part A, 2017, 536, 27; DOI: https://doi.org/10.1016/j.apcata.2017.02.015.

    Article  CAS  Google Scholar 

  31. A. Vasseur, R. Membrat, D. Gatineau, A. Tenaglia, D. Nuel, L. Giordano, ChemCatChem., 2017, 9, 728; DOI: https://doi.org/10.1002/cctc.201601261.

    Article  CAS  Google Scholar 

  32. K. Ando, J. Nakazawa, S. Hikichi, Eur. J. Inorg. Chem., 2016, 2603; DOI: https://doi.org/10.1002/ejic.201600206.

  33. N. Armenise, N. Tahiri, N.N.H.M. Eisink, M. Denis, M. Jäger, J. G. De Vries, M. D. Witte, A. J. Minnaard, Chem. Commun., 2016, 52, 2189; DOI: https://doi.org/10.1039/C5CC08588H.

    Article  CAS  Google Scholar 

  34. L. M. Dornan, M. J. Muldoon, Catal. Sci. Technol., 2015, 5, 1428; DOI: https://doi.org/10.1039/C4CY01632G.

    Article  CAS  Google Scholar 

  35. K. Karami, N.H. Naeini, V. Eigner, M. Dusek, J. Lipkowski, P. Hervés, H. Tavakol, RSC Adv., 2015, 5, 102424; DOI: https://doi.org/10.1039/C5RA17249G.

    Article  CAS  Google Scholar 

  36. S. Gowrisankar, H. Neumann, D. Gördes, K. Thurow, H. Jiao, M. Beller, Chem.—Eur. J., 2013, 19, 15979; DOI: https://doi.org/10.1002/chem.201302526.

    Article  CAS  PubMed  Google Scholar 

  37. B. Karimi, D. Elhamifar, J. H. Clark, A. J. Hunt, Org. Biomol. Chem., 2011, 9, 7420.

    Article  CAS  PubMed  Google Scholar 

  38. X. Sun, Y. Zheng, L. Sun, Q. Lin, H. Su, C. Qi, Nano-Struct. Nano-Object., 2016, 5, 7; DOI: https://doi.org/10.1039/C1OB05752A.

    Article  CAS  Google Scholar 

  39. J. Li, T. Qi, L. Wang, Ch. Liu, Y. Zhang, Mater. Lett., 2007, 61, 3197; DOI: https://doi.org/10.1016/j.matlet.2006.11.079.

    Article  CAS  Google Scholar 

  40. J. Azizian, H. Tahermansouri, E. Biazar, S. Heidari, D. Chobfrosh Khoei, Int. J. Nanomed., 2010, 5, 907; DOI: https://doi.org/10.2147/IJN.S13629.

    CAS  Google Scholar 

  41. A. Wolfson, S. Wuyts, D. E. De Vos, I. F. J. Vankelecom, P. A. Jacobs, Tetrahedron Lett., 2002, 43, 8107; DOI: https://doi.org/10.1016/S0040-4039(02)01921-4.

    Article  CAS  Google Scholar 

  42. A. Dijksman, I. W. C. E. Arends, R. A. Sheldon, Chem. Commun., 1999, 1591; DOI: https://doi.org/10.1039/A902594D.

  43. J. Muzart, Tetrahedron, 2003, 49, 5789; DOI: https://doi.org/10.1016/j.tet.2005.04.002.

    Article  CAS  Google Scholar 

  44. M. Nasrollahzadeh, M. Sajjadi, M. Shokouhimehr, R. S. Varma, Coord. Chem. Rev., 2019, 397, 54; DOI: https://doi.org/10.1016/j.ccr.2019.06.010.

    Article  CAS  Google Scholar 

  45. Sh. S. Stahl, Angew. Chem., Int. Ed., 2004, 43, 3400; DOI: https://doi.org/10.1002/anie.200300630.

    Article  CAS  Google Scholar 

  46. B. A. Steinhoff, Sh. R. Fix, Sh. S. Stahl, J. Am. Chem. Soc., 2002, 124, 766; DOI: https://doi.org/10.1021/ja016806w.

    Article  CAS  PubMed  Google Scholar 

  47. F. Zamani, S. M. Hosseini, Catal. Commun., 2014, 43, 164; DOI: https://doi.org/10.1016/j.catcom.2013.09.029.

    Article  CAS  Google Scholar 

  48. L. Zhang, P. Li, J. Yang, M. Wang, L. Wang, Chempluschem., 2014, 79, 217; DOI: https://doi.org/10.1002/cplu.201300353.

    Article  CAS  PubMed  Google Scholar 

  49. D. Wang, C. Deraedt, L. Salmon, C. Labrugère, L. Etienne, J. Ruiz, D. Astruc, Chem.—Eur. J., 2015, 21, 6501; DOI: https://doi.org/10.1002/chem.201500122.

    Article  CAS  PubMed  Google Scholar 

  50. H. Veisi, S. Hemmati, M., Tetrahedron Lett., 2017, 58, 4191; DOI: https://doi.org/10.1016/j.tetlet.2017.09.057.

    Article  CAS  Google Scholar 

  51. P. Sangtrirutnugul, T. Chaiprasert, W. Hunsiri, T. Jitjaroendee, P. Songkhum, K. Laohhasurayotin, T. Osotchan, V. Ervithayasuporn, ACS Appl. Mater. Interfaces, 2017, 9, 12812; DOI: https://doi.org/10.1021/acsami.7b03910.

    Article  CAS  PubMed  Google Scholar 

  52. Q. Wang, X. Cai, Y. Liu, J. Xie, Y. Zhou, J. Wang, Appl. Catal., Part B, 2016, 189, 242; DOI: https://doi.org/10.1016/j.apcatb.2016.02.067.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hassanpour.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1194–1203, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, Z., Hassanpour, A., Kangari, S. et al. Highly dispersed palladium nanoparticles supported on an imidazolium-based ionic liquid polymer: an efficient catalyst for oxidation of alcohols. Russ Chem Bull 71, 1194–1203 (2022). https://doi.org/10.1007/s11172-022-3520-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3520-4

Key words

Navigation