Skip to main content
Log in

Influence of temperature and imidization method on the structure and properties of polyimide fibers prepared by wet spinning

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A polyamic acid (PAA) based on 4,4′-bis(4-aminophenoxy)diphenyldiamine and 1,3-bis-(3′,4-dicarboxyphenoxy)benzene dianhydride was synthesized. PAA fibers were prepared by wet spinning. Subsequent cyclization of PAA units was achieved using chemical or thermal imidization. The influence of the imidization method and process conditions on the chemical structure, porosity, morphology, thermal and mechanical properties of polyimide (PI) fibers was studied. Thermal imidization was carried out in the temperature range from 60 to 300 °C at different process durations. The degree of imidization of PI fibers was studied by IR spectroscopy. The structure and properties of PI fibers were studied by scanning electron microscopy, thermal analysis, and by measuring the stress-strain properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, L. A. Laius, Polyimides: Thermally Stable Polymers, Springer-Verlag, New York, 1987, 318 pp.

    Book  Google Scholar 

  2. D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, C. S. Ha, Prog. Polym. Sci., 2012, 37, 907. DOI: https://doi.org/10.1016/j.progpolymsci.2012.02.005.

    Article  CAS  Google Scholar 

  3. J. Deabajo, J. G. Delacampa, Processable Aromatic Polyimides, In: Progress in Polyimide Chemistry. Ed. H. Kricheldorf, 1999, 140, 23; DOI: https://doi.org/10.1007/3-540-49815-X_2.

  4. D. A. Sapozhnikov, A. V. Chuchalov, B. A. Bayminov, P. A. Shibaeva, Russ. Chem. Bull., 2020, 69, 1486; DOI: https://doi.org/10.1007/s11172-020-2927-z.

    Article  CAS  Google Scholar 

  5. E. A. Komissarova, V. E. Zhulanov, I. G. Mokrushin, A. N. Vasyanin, E. V. Shklyaeva, G. G. Abashev, Russ. Chem. Bull., 2020, 69, 1944; DOI: https://doi.org/10.1007/s11172-020-2983-4.

    Article  CAS  Google Scholar 

  6. Q. H. Zhang, J. Dong, D. Wu, Adv. Polym. Mat. Synth., Characterization and Appl., Adv. Polyimide Fibers, 2018, 2, 67; DOI: https://doi.org/10.1016/B978-0-12-812640-0.00002-0.

    Google Scholar 

  7. I. L. Borisov, S. D. Bazhenov, V. P. Vasilevsky, D. S. Bakhtin, A. V. Balynin, A. A. Yushkin, J. Phys., Conf. Ser., 2020, 1696, 012040; DOI: https://doi.org/10.1088/1742-6596/1696/1/012040.

    Article  CAS  Google Scholar 

  8. Y. Li, B. Cao, P. Li, J. Membrane Sci., 2017, 544, 1; DOI: https://doi.org/10.1016/j.memsci.2017.08.070.

    Article  CAS  Google Scholar 

  9. G. V. Vaganov, A. L. Didenko, E. M. Ivankova, E. N. Popova, V. Yu. Elokhovskii, A. V. Volkov, V. E. Yudin, Russ. J. Appl. Chem. (Engl. Transl.), 2020, 93, 72; DOI: https://doi.org/10.1134/S1070427220010085.

    Article  CAS  Google Scholar 

  10. Xu Yuan, Wang Shihua, Li Zhentao, Xu Qian, Zhang Qinghua, J. Mat. Sci., 2013, 48, 7863; DOI: https://doi.org/10.1007/s10853-013-7310-0.

    Article  Google Scholar 

  11. V. M. Svetlichnyi, G. V. Vaganov, L. A. Myagkova, A. N. Bugrov, A. E. Chiryat’eva, E. N. Vlasova, E. M. Ivan’kova, Yu. E. Elokhovskii, E. N. Popova, V. E. Smirnova, V. E. Yudin, Russ. J. Appl. Chem. (Engl. Transl.), 2020, 93, 35; DOI: https://doi.org/10.1134/S1070427220010048.

    Article  CAS  Google Scholar 

  12. Y. Xu, A. Zhao, X. Wang, H. Xue, F. Liu, J. Wuhan, University Tech. Mater. Sci. Ed., 2016, 31, 1137; DOI: https://doi.org/10.1007/s11595-016-1502-9.

    Article  CAS  Google Scholar 

  13. A. A. Ali, Z. Ahmad, J. Mater. Sci., 2007, 42, 8363; DOI: https://doi.org/10.1007/s10853-006-1072-x.

    Article  CAS  Google Scholar 

  14. M. Oba, J. Polym. Sci. Polym. Chem., 1996, 34, 651; DOI: https://doi.org/10.1002/(SICI)1099-0518(199603)34:4<651::AID-POLA11>3.0.CO;2-N.

    Article  CAS  Google Scholar 

  15. A. A. Kuznetov, A. Y. Tsegelskaya, M. Y. Belov, M. Berendyaev, S. V. Lavrov, G. K. Semenova, A. L. Izyumnikov, N. V. Kozlova, B. V. Kotov, Macromol. Symp., 1998, 128, 203; DOI: https://doi.org/10.1002/masy.19981280120.

    Article  Google Scholar 

  16. Z. X. Jin, H. A. Ishii, J. Appl. Polym. Sci., 2006, 100, 4240; DOI: https://doi.org/10.1002/app.23806.

    Article  CAS  Google Scholar 

  17. G. Vaganov, A. Didenko, E. Ivan’kova, E. Popova, V. Yudin, V. Elokhovskii, I. Lasota, J. Mat. Res., 2019, 34, 1; DOI: https://doi.org/10.1557/jmr.2019.161.

    Article  Google Scholar 

  18. H. Niu, S. Qi, E. Han, G. Tian, X. Wang, D. Wu., Mat. Lett., 2012, 89, 63; DOI: https://doi.org/10.1016/J.MATLET.2012.08.088.

    Article  CAS  Google Scholar 

  19. M. Zhang, H. Niu, D. Wu, Macromolec. Rap. Commun., 2018, 39, 1; DOI: https://doi.org/10.1002/marc.201800141.

    Google Scholar 

  20. N. Peng, N. Widjojo, P. Sukitpaneenit, M. M. Teoh, G. G. Lipscomb, T. Chung, J. Lai, Prog. Polym. Sci., 2012, 37, 1401; DOI: https://doi.org/10.1016/j.progpolymsci.2012.01.001.

    Article  CAS  Google Scholar 

  21. A. F. Ismail, K. C. Khulbe, T. Matsuura, Gas Separation Membranes, 2015, 193; DOI: https://doi.org/10.1007/978-3-319-01095-3_4.

  22. M. Etxeberria-Benavides, O. Karvan, F. Kapteijn, J. Gascon, O. David, 2020, 10, 1. DOI: https://doi.org/10.3390/membranes10010004.

  23. I. G. Silinskaya, V. M. Svetlichnyi, N. A. Kalinina, A. L. Didenko, A. P. Filippov, V. V. Kudryavtsev, Polym. Sci., Ser. A (Engl. Transl.), 2006, 48, 787; DOI: https://doi.org/10.1134/S0965545X06080037.

    Article  Google Scholar 

  24. O. V. Okatova, A. L. Didenko, V. M. Svetlichnyi, G. M. Pavlov, Polym. Sci. Ser. A (Engl. Transl.), 2016, 58, 12; DOI: https://doi.org/10.1134/S0965545X16010089.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Vaganov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 760–765, April, 2022.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 18-29-17040 mk).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaganov, G.V., Didenko, A.L., Ivan’kova, E.M. et al. Influence of temperature and imidization method on the structure and properties of polyimide fibers prepared by wet spinning. Russ Chem Bull 71, 760–765 (2022). https://doi.org/10.1007/s11172-022-3476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3476-4

Key words

Navigation