Skip to main content
Log in

Stannylenes based on neutral, anionic, and dianionic 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian (1)) with one equivalent of SnCl2 gave the complex [(dpp-bian)0SnCl2] (2) containing the neutral dpp-bian ligand. Paramagnetic stannylene [(dpp-bian)SnCl] (3) was prepared by the treatment of dpp-bian with a fivefold excess of SnCl2 and KC8. The treatment of dpp-bian with one equivalent of SnCl2 and two equivalents of KC8 in the presence of one equivalent of [CpFe(CO)2]2 afforded the diamagnetic stannylene complex [(dpp-bian)2−Sn] (4) based on the dpp-bian dianion. The diazastannacycle in complex 4 was proved to be aromatic by NMR spectroscopy. The new compounds were characterized by elemental analysis, IR spectroscopy (2–4), multinuclear NMR spectroscopy (2, 4), and EPR spectroscopy (3). The molecular structures of complexes 2–4 were determined by single-crystal X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Elschenbroich, Organometallics, Wiley-VCH Verlag, Weinheim 2006, 804 pp.

    Google Scholar 

  2. C. Jones, A. Stasch, The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities, John Wiley & Sons, Ltd., UK 2011, 714 pp.

    Google Scholar 

  3. J. Arnold, Dalton Trans., 2008, 4334; DOI: https://doi.org/10.1039/B812066H.

  4. R. L. Melen, Science, 2019, 363, 479; DOI: https://doi.org/10.1126/science.aau5105.

    Article  CAS  PubMed  Google Scholar 

  5. C. Weetman, S. Inoue, ChemCatChem, 2018, 10, 4213; DOI: https://doi.org/10.1002/cctc.201800963.

    Article  CAS  Google Scholar 

  6. P. P. Power, Nature, 2010, 463, 171; DOI: https://doi.org/10.1038/nature08634.

    Article  CAS  PubMed  Google Scholar 

  7. F. Hanusch, L. Groll, S. Inoue, Chem. Sci., 2021, 12, 2001; DOI: https://doi.org/10.1039/d0sc03192e.

    Article  CAS  Google Scholar 

  8. A. H. Cowley, J. Organomet. Chem., 2004, 689, 3866; DOI: https://doi.org/10.1016/j.jorganchem.2004.05.007.

    Article  CAS  Google Scholar 

  9. D. W. Stephan, G. Erker, Chem. Sci., 2014, 5, 2625; DOI: https://doi.org/10.1039/C4SC00395K.

    Article  CAS  Google Scholar 

  10. D. W. Stephan, G. Erker, Angew. Chem. Int. Ed., 2010, 49, 46; DOI: https://doi.org/10.1002/anie.200903708.

    Article  CAS  Google Scholar 

  11. A. Stoy, J. Böhnke, J. O. C. Jiménez-Halla, R. D. Dewhurst, T. Thiess, H. Braunschweig, Angew. Chem. Int. Ed., 2018, 57, 5947; DOI: https://doi.org/10.1002/anie.201802117.

    Article  CAS  Google Scholar 

  12. M. Arrowsmith, J. Böhnke, H. Braunschweig, M. A. Celik, Angew. Chem. Int. Ed., 2017, 56, 14287; DOI: https://doi.org/10.1002/anie.201707907.

    Article  CAS  Google Scholar 

  13. M.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, H. Braunschweig, Science, 2018, 359, 896; DOI: https://doi.org/10.1126/science.aaq1684.

    Article  PubMed  CAS  Google Scholar 

  14. R. Lalrempuia, A. Stasch, C. Jones, Chem. Sci., 2013, 4, 4383; DOI: https://doi.org/10.1039/C3SC52242C.

    Article  CAS  Google Scholar 

  15. R. P. Kelly, N. Kazeminejad, C. A. Lamsfus, L. Maron, P. W. Roesky, Chem. Commun., 2016, 52, 13090; DOI: https://doi.org/10.1039/C6CC05638E.

    Article  CAS  Google Scholar 

  16. J. A. B. Abdalla, I. M. Riddlestone, R. Tirfoin, S. Aldridge, Angew. Chem. Int. Ed., 2015, 54, 5098; DOI: https://doi.org/10.1002/anie.201500570.

    Article  CAS  Google Scholar 

  17. N. L. Dunn, M. Ha, A. T. Radosevich, J. Am. Chem. Soc., 2012, 134, 11330; DOI: https://doi.org/10.1021/ja302963p.

    Article  CAS  PubMed  Google Scholar 

  18. W. Zhao, S. M. McCarthy, T. Y. Lai, H. P. Yennawar, A. T. Radosevich, J. Am. Chem. Soc., 2014, 136, 17634; DOI: https://doi.org/10.1021/ja510558d.

    Article  CAS  PubMed  Google Scholar 

  19. T. P. Robinson, D. M. De Rosa, S. Aldridge, J. M. Goicoechea, Angew. Chem. Int. Ed., 2015, 54, 13758; DOI: https://doi.org/10.1002/anie.201506998.

    Article  CAS  Google Scholar 

  20. A. Schäfer, M. Reißmann, A. Schäfer, M. Schmidtmann, T. Müller, Chem. Eur. J., 2014, 20, 9381; DOI: https://doi.org/10.1002/chem.201402874.

    Article  PubMed  CAS  Google Scholar 

  21. A. Jana, C. Schulzke, H. W. Roesky, J. Am. Chem. Soc., 2009, 131, 4600; DOI: https://doi.org/10.1021/ja900880z.

    Article  CAS  PubMed  Google Scholar 

  22. K. Hansen, T. Szilvási, B. Blom, E. Irran, M. Driess, Chem. Eur. J., 2014, 20, 1947; DOI: https://doi.org/10.1002/chem.201303906.

    Article  CAS  PubMed  Google Scholar 

  23. C. Präsang, M. Stoelzel, S. Inoue, A. Meltzer, M. Driess, Angew. Chem. Int. Ed., 2010, 49, 10002; DOI: https://doi.org/10.1002/anie.201005903.

    Article  CAS  Google Scholar 

  24. Z. D. Brown, P. P. Power, Inorg. Chem., 2013, 52, 6248; DOI: https://doi.org/10.1021/ic4007058.

    Article  CAS  PubMed  Google Scholar 

  25. L. Pu, B. Twamley, P. P. Power, J. Am. Chem. Soc., 2000, 122, 3524; DOI: https://doi.org/10.1021/ja993346m.

    Article  CAS  Google Scholar 

  26. Y. Peng, M. Brynda, B. D. Ellis, J. C. Fettinger, E. Rivard, P. P. Power, Chem. Commun., 2008, 6042; DOI: https://doi.org/10.1039/B813442A.

  27. T. J. Hadlington, C. Jones, Chem. Commun., 2014, 50, 2321; DOI: https://doi.org/10.1039/C3CC49651A.

    Article  CAS  Google Scholar 

  28. S. Wang, T. J. Sherbow, L. A. Berben, P. P. Power, J. Am. Chem. Soc., 2018, 140, 590; DOI: https://doi.org/10.1021/jacs.7b11798.

    Article  CAS  PubMed  Google Scholar 

  29. M. Bouška, L. Dostál, A. Růžička, L. Beneš, R. Jambor, Chem. Eur. J., 2011, 17, 450; DOI: https://doi.org/10.1002/chem.201002584.

    Article  PubMed  CAS  Google Scholar 

  30. J. S. Han, T. Sasamori, Y. Mizuhata, N. Tokitoh, J. Am. Chem. Soc., 2010, 132, 2546; DOI: https://doi.org/10.1021/ja9108566.

    Article  CAS  PubMed  Google Scholar 

  31. S. Freitag, K. M. Krebs, J. Henning, J. Hirdler, H. Schubert, L. Wesemann, Organometallics, 2013, 32, 6785; DOI: https://doi.org/10.1021/om400736e.

    Article  CAS  Google Scholar 

  32. D. Sarkar, C. Weetman, D. Munz, S. Inoue, Angew. Chem. Int. Ed., 2021, 60, 3519; DOI: https://doi.org/10.1002/anie.202013423.

    Article  CAS  Google Scholar 

  33. A. Kavara, T. T. Boron, Z. S. Ahsan, M. M. Banaszak Holl, Organometallics, 2010, 29, 5033; DOI: https://doi.org/10.1021/om100267a.

    Article  CAS  Google Scholar 

  34. Z. Padělková, P. Švec, V. Pejchal, A. Růžička, Dalton Trans., 2013, 42, 7660; DOI: https://doi.org/10.1039/C3DT50278C.

    Article  PubMed  CAS  Google Scholar 

  35. T. J. Hadlington, M. Driess, C. Jones, Chem. Soc. Rev., 2018, 47, 4176; DOI: https://doi.org/10.1039/C7CS00649G.

    Article  CAS  PubMed  Google Scholar 

  36. S. Weiß, M. Widemann, K. Eichele, H. Schubert, L. Wesemann, Dalton Trans., 2021, 50, 4952; DOI: https://doi.org/10.1039/D1DT00542A.

    Article  PubMed  Google Scholar 

  37. S. K. Mandal, H. W. Roesky, Acc. Chem. Res., 2012, 45, 298; DOI: https://doi.org/10.1021/ar2001759.

    Article  CAS  PubMed  Google Scholar 

  38. V. A. Dodonov, A. A. Skatova, I. L. Fedushkin, Russ. J. Coord. Chem., 2019, 45, 301; DOI: https://doi.org/10.1134/S1070328419040031.

    Article  CAS  Google Scholar 

  39. V. A. Dodonov, W. Chen, L. Liu, V. G. Sokolov, E. V. Baranov, A. A. Skatova, Y. Zhao, B. Wu, X.-J. Yang, I. L. Fedushkin, Inorg. Chem., 2021, 60, 14602; DOI: https://doi.org/10.1021/acs.inorgchem.1c01581.

    Article  CAS  PubMed  Google Scholar 

  40. I. L. Fedushkin, V. A. Dodonov, A. A. Skatova, V. G. Sokolov, A. V. Piskunov, G. K. Fukin, Chem. Eur. J., 2018, 24, 1877; DOI: https://doi.org/10.1002/chem.201704128.

    Article  CAS  PubMed  Google Scholar 

  41. I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, V. A. Chudakova, N. L. Bazyakina, A. V. Piskunov, S. V. Demeshko, G. K. Fukin, Inorg. Chem., 2014, 53, 5159; DOI: https://doi.org/10.1021/ic500259k.

    Article  CAS  PubMed  Google Scholar 

  42. V. A. Dodonov, A. A. Skatova, A. V. Cherkasov, I. L. Fedushkin, Russ. Chem. Bull., 2016, 65, 1171; DOI: https://doi.org/10.1007/s11172-016-1433-9.

    Article  CAS  Google Scholar 

  43. I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, X.-J. Yang, V. A. Chudakova, A. V. Piskunov, S. Demeshko, E. V. Baranov, Inorg. Chem., 2016, 55, 9047; DOI: https://doi.org/10.1021/acs.inorgchem.6b01514.

    Article  CAS  PubMed  Google Scholar 

  44. V. A. Dodonov, O. Kushnerova, E. V. Baranov, A. S. Novikov, I. L. Fedushkin, Dalton Trans., 2021, 50, 8899; DOI: https://doi.org/10.1039/D1DT01199E.

    Article  CAS  PubMed  Google Scholar 

  45. V. A. Dodonov, L. Xiao, O. A. Kushnerova, E. V. Baranov, Y. Zhao, X.-J. Yang, I. L. Fedushkin, Chem. Commun., 2020, 56, 7475; DOI: https://doi.org/10.1039/D0CC03270K.

    Article  CAS  Google Scholar 

  46. W. Chen, V. A. Dodonov, V. G. Sokolov, L. Liu, E. V. Baranov, Y. Zhao, I. L. Fedushkin, X.-J. Yang, Organometallics, 2021, 40, 490; DOI: https://doi.org/10.1021/acs.organomet.0c00738.

    Article  CAS  Google Scholar 

  47. V. M. Makarov, T. S. Koptseva, V. G. Sokolov, V. A. Dodonov, A. A. Skatova, E. V. Baranov, I. L. Fedushkin, Russ. J. Coord. Chem., 2020, 46, 215; DOI: https://doi.org/10.1134/S1070328420030045.

    Article  CAS  Google Scholar 

  48. V. A. Dodonov, W. Chen, Y. Zhao, A. A. Skatova, P. W. Roesky, B. Wu, X. J. Yang, I. L. Fedushkin, Chem. Eur. J., 2019, 25, 8259; DOI: https://doi.org/10.1002/chem.201900517.

    Article  CAS  PubMed  Google Scholar 

  49. W. Zhang, V. A. Dodonov, W. Chen, Y. Zhao, A. A. Skatova, I. L. Fedushkin, P. W. Roesky, B. Wu, X.-J. Yang, Chem. Eur. J., 2018, 24, 14994; DOI: https://doi.org/10.1002/chem.201802469.

    Article  CAS  PubMed  Google Scholar 

  50. I. L. Fedushkin, M. V. Moskalev, A. N. Lukoyanov, A. N. Tishkina, E. V. Baranov, G. A. Abakumov, Chem. Eur. J., 2012, 18, 11264; DOI: https://doi.org/10.1002/chem.201201364.

    Article  CAS  PubMed  Google Scholar 

  51. V. A. Dodonov, A. G. Morozov, R. V. Rumyantsev, G. K. Fukin, A. A. Skatova, P. W. Roesky, I. L. Fedushkin, Inorg. Chem., 2019, 58, 16559; DOI: https://doi.org/10.1021/acs.inorgchem.9b02592.

    Article  CAS  PubMed  Google Scholar 

  52. O. V. Kazarina, C. Gourlaouen, L. Karmazin, A. G. Morozov, I. L. Fedushkin, S. Dagorne, Dalton Trans., 2018, 47, 13800; DOI: https://doi.org/10.1039/C8DT02614A.

    Article  CAS  PubMed  Google Scholar 

  53. A. G. Morozov, T. V. Martemyanova, V. A. Dodonov, O. V. Kazarina, I. L. Fedushkin, Eur. J. Inorg. Chem., 2019, 2019, 4198; DOI: https://doi.org/10.1002/ejic.201900715.

    Article  CAS  Google Scholar 

  54. H.-M. M. Yeh, R. A. Geanangel, Inorg. Chim. Acta, 1981, 52, 113; DOI: https://doi.org/10.1016/S0020-1693(00)88583-7.

    Article  CAS  Google Scholar 

  55. I. L. Fedushkin, A. N. Lukoyanov, N. M. Khvoinova, A. V. Cherkasov, Russ. Chem. Bull., 2013, 62, 2454; DOI: https://doi.org/10.1007/s11172-013-0355-z.

    Article  CAS  Google Scholar 

  56. I. L. Fedushkin, N. M. Khvoinova, A. Y. Baurin, V. A. Chudakova, A. A. Skatova, V. K. Cherkasov, G. K. Fukin, E. V. Baranov, Russ. Chem. Bull., 2006, 55, 74; DOI: https://doi.org/10.1007/s11172-006-0217-z.

    Article  CAS  Google Scholar 

  57. B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, S. Alvarez, Dalton Trans., 2008, 2832; DOI: https://doi.org/10.1039/B801115J.

  58. A. V. Piskunov, I. A. Aivaz’yan, V. K. Cherkasov, G. A. Abakumov, J. Organomet. Chem., 2006, 691, 1531; DOI: https://doi.org/10.1016/j.jorganchem.2005.11.064.

    Article  CAS  Google Scholar 

  59. N. O. Druzhkov, G. G. Kazakov, A. S. Shavyrin, E. V. Baranov, E. N. Egorova, A. V. Piskunov, G. A. Abakumov, Inorg. Chem. Commun., 2018, 90, 92; DOI: https://doi.org/10.1016/j.inoche.2018.02.009.

    Article  CAS  Google Scholar 

  60. T. Chlupatý, Z. Padělková, A. Lyčka, J. Brus, A. Růžička, Dalton Trans., 2012, 41, 5010; DOI: https://doi.org/10.1039/C2DT12472F.

    Article  PubMed  CAS  Google Scholar 

  61. W. A. Merrill, J. Steiner, A. Betzer, I. Nowik, R. Herber, P. P. Power, Dalton Trans., 2008, 5905; DOI: https://doi.org/10.1039/B809671F.

  62. C. Jones, S. J. Bonyhady, N. Holzmann, G. Frenking, A. Stasch, Inorg. Chem., 2011, 50, 12315; DOI: https://doi.org/10.1021/ic200682p.

    Article  CAS  PubMed  Google Scholar 

  63. L. A. Leites, S. S. Bukalov, R. R. Aysin, A. V. Piskunov, M. G. Chegerev, V. K. Cherkasov, A. V. Zabula, R. West, Organometallics, 2015, 34, 2278; DOI: https://doi.org/10.1021/om501054t.

    Article  CAS  Google Scholar 

  64. Yu. V. Karyakin, N. N. Angelov, Chistye khimicheskie veshchestva [Pure Chemical Substances], Khimiya, Moscow, 1974, 408 pp. (in Russian).

    Google Scholar 

  65. S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42; DOI: https://doi.org/10.1016/j.jmr.2005.08.013.

    Article  CAS  PubMed  Google Scholar 

  66. Bruker (2000) SAINTPlus Data Reduction and Correction Program, v. 6.02a, Bruker AXS, Madison, Wisconsin, USA.

  67. Bruker (2012). SAINT. Data Reduction and Correction Program, v. 8.27B, Bruker AXS, Madison, Wisconsin, USA.

  68. G. Sheldrick, Acta Crystallographica Section A, 2008, 64, 112; DOI: https://doi.org/10.1107/S0108767307043930.

    CAS  Google Scholar 

  69. G. Sheldrick, Acta Crystallographica Section A, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  CAS  Google Scholar 

  70. G. M. Sheldrick, SHELXTL. Version 6.14. Structure Determination Software Suite, Madison (WI, USA): Bruker AXS, 2003.

    Google Scholar 

  71. Bruker (2006). SADABS v. 2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA.

  72. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. A. Spek, Acta Crystallogr. Sect. D, 2009, 65, 148; DOI: https://doi.org/10.1107/S090744490804362X.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (Project No. 21-73-20153) using the equipment of the Center for Collective Use “Analytical Center of the IOMC RAS” with the financial support by the Ministry of Science and Higher Education of the Russian Federation (grant “Ensuring the Development of the Material and Technical Infrastructure of the Centers for Collective Use of Scientific Equipment,” unique identifier RF—2296.61321X0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dodonov.

Additional information

Dedicated to the Director of the A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Corresponding Member of the Russian Academy of Sciences A. A. Trifonov on the occasion of his 60th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 322–329, February, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodonov, V.A., Kushnerova, O.A., Razborov, D.A. et al. Stannylenes based on neutral, anionic, and dianionic 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene. Russ Chem Bull 71, 322–329 (2022). https://doi.org/10.1007/s11172-022-3414-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3414-5

Key words

Navigation