Skip to main content
Log in

New bifunctional amphiphilic oxyethylimidazolium derivatives of calix[4]arene containing alkynyl/azide fragments: regularities of aggregation and polymerization under azide/alkyne cycloaddition conditions

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New bifunctional amphiphilic oxyethylimidazolium derivatives of calix[4]arene with terminal alkynyl or azide fragments in the polar moiety of the molecule were synthesized. The aggregation characteristics (critical aggregation concentrations, size, and zeta potential) of the synthesized macrocyclic azides, alkynes, and their mixtures were studied. Polymeric particles were obtained under the azide/alkyne cycloaddition conditions. Covalent cross-linking of the aggregate core was proved by IR spectroscopy. The size, molecular weight, and morphology of the polymerized particles were determined. The catalytic properties of the in situ formed Pd(OAc)2 complex with the prepared polymerized particles were studied in the model Suzuki cross-coupling reaction in an aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, X. Ding, X. Guo, Adv. Colloid Interface Sci., 2019, 269, 187–202; DOI: https://doi.org/10.1016/j.cis.2019.04.004.

    Article  CAS  Google Scholar 

  2. L. Ya. Zakharova, V. E. Semenov, V. V. Syakaev, M. A. Voronin, D. R. Gabdrakhmanov, F. G. Valeeva, A. S. Mikhailov, A. D. Voloshina, V. S. Reznik, Sh. K. Latypov, A. I. Konovalov, Mater. Sci. Eng. C, 2020, 596, 124700; DOI: https://doi.org/10.1016/j.colsurfa.2020.124700.

    Google Scholar 

  3. L. Yue, K. Yang, X.-Y. Lou, Y.-W. Yang, R. Wang, Matter, 2020, 3(5), 1557–1588; DOI: https://doi.org/10.1016/j.matt.2020.09.019.

    Article  Google Scholar 

  4. A. B. Mirgorodskaya, R. A. Kushnazarova, F. G. Valeeva, S. S. Lukashenko, A. A. Tyryshkina, L. Ya. Zakharova, O. G. Sinyashin, Mendeleev Commun., 2021, 31, 323–325; DOI: https://doi.org/10.1016/j.mencom.2021.04.014.

    Article  CAS  Google Scholar 

  5. F. Perin, A. Motta, D. Maniglio, Mater. Sci. Eng. C, 2021, 123, 111952; DOI: https://doi.org/10.1016/j.msec.2021.111952.

    Article  CAS  Google Scholar 

  6. Q. Qi, S. Yueming, L. Junfeng, Tetrahedron Lett., 2021, 65, 152740; DOI: https://doi.org/10.1016/j.tetlet.2020.152740.

    Article  CAS  Google Scholar 

  7. A. M. Valiyakhmetova, E. D. Sultanova, V. A. Burilov, S. E. Solovieva, I. S. Antipin, Russ. Chem. Bull., 2019, 68, 1067; DOI:https://doi.org/10.1007/s11172-019-2521-4.

    Article  CAS  Google Scholar 

  8. I. I. Stoikov, P. L. Padnya, O. A. Mostovaya, A. A. Vavilova, V. V. Gorbachuk, D. N. Shurpik, G. A. Evtugin, Russ. Chem. Bull., 2019, 68, 1962; DOI:https://doi.org/10.1007/s11172-019-2655-4.

    Article  CAS  Google Scholar 

  9. B. Kh. Gafiatullin, D. D. Radaev, M. V. Osipova, E. D. Sultanova, V. A. Burilov, S. E. Solovieva, I. S. Antipin, Macroheterocycles, 2021, 14, 171; DOI: https://doi.org/10.6060/mhc210439s.

    Article  CAS  Google Scholar 

  10. E. Levin, E. Ivry, Ch. E. Diesendruck, N. G. Lemcoff, Chem. Rev., 2015, 115, 4607; DOI: https://doi.org/10.1021/cr400640e.

    Article  CAS  Google Scholar 

  11. L. A. Schaper, S. J. Hock, W. A. Herrmann, F. E. Kuhn, Angew. Chem., Int. Ed., 2013, 52, 270; DOI: https://doi.org/10.1002/anie.201205119.

    Article  CAS  Google Scholar 

  12. E. Ertuğrul, R. Fırıncı, N. Özdemir, M. E. Günay, J. Organomet. Chem., 2021, 948, 121911; DOI: https://doi.org/10.1016/j.jorganchem.2021.121911.

    Article  Google Scholar 

  13. J. Yang, J. Liu, Y. Wang, J. Wang, J. Inclusion Phenom. Macrocyclic Chem., 2018, 90, 15; DOI: https://doi.org/10.1007/s10847-017-0766-9.

    Article  CAS  Google Scholar 

  14. L. Guo, Xi-Zh. Song, C.-X. Lin, Q.-Sh. Li, Ch. Liu, W.-H. Wang, F.-B. Xu, Polyhedron, 2015, 85, 732–739; DOI: https://doi.org/10.1016/j.poly.2014.09.043.

    Article  CAS  Google Scholar 

  15. Z. Kaya, E. Bentouhami, K. Pelzer, D. Armspach, Coord. Chem. Rev., 2021, 445, 214066; DOI: https://doi.org/10.1016/j.ccr.2021.214066.

    Article  CAS  Google Scholar 

  16. V. A. Burilov, B. Kh. Gafiatullin, D. A. Mironova, E. D. Sultanova, V. G. Evtugyn, Yu. N. Osin, D. R. Islamov, K. S. Usachev, S. E. Solovieva, I. S. Antipin, Eur. J. Org. Chem., 2020, 23, 2180; DOI: https://doi.org/10.1039/D0RA09740C.

    Article  Google Scholar 

  17. V. Burilov, R. Garipova, E. Sultanova, D. Mironova, I. Grigoryev, S. Solovieva, I. Antipin, Nanomaterials, 2020, 10, 1143; DOI: https://doi.org/10.3390/nano10061143.

    Article  CAS  Google Scholar 

  18. Y. Lei, M. Fan, G. Lan, G. Li, Appl. Organomet. Chem., 2020, 34, e5794; DOI: https://doi.org/10.1002/aoc.5794.

    CAS  Google Scholar 

  19. S. Shylesh, V. Schunemann, W. R. Thiel, Angew. Chem., Int. Ed., 2010, 49, 3428; DOI: https://doi.org/10.1002/anie.200905684.

    Article  CAS  Google Scholar 

  20. V. Burilov, R. Garipova, D. Mironova, E. Sultanova, I. Bogdanov, E. Ocherednyuk, V. Evtugyn, Y. Osin, I. Rizvanov, S. Solovieva, I. Antipin, RSC Adv., 2021, 11, 584–591; DOI: https://doi.org/10.1039/d0ra09740c.

    Article  CAS  Google Scholar 

  21. V. A. Burilov, R. I. Garipova, S. E. Solovieva, I. S. Antipin, Dokl. Chem., 2020, 490, 3–8; DOI: https://doi.org/10.1134/S0012500820010012.

    Article  Google Scholar 

  22. N. Zhao, S. Roesler, T. Kissel, Int. J. Pharm., 2011, 411, 197–205; DOI: https://doi.org/10.1016/j.ijpharm.2011.03.038.

    Article  CAS  Google Scholar 

  23. V. Jadhav, J.-Y. Kim, D.-Y. Chi, D.-W. Kim, Tetrahedron., 2014, 70, 533–542; DOI: https://doi.org/10.1016/j.tet.2013.10.070.

    Article  CAS  Google Scholar 

  24. Y. Ishida, D. Sasaki, H. Miyauchi, K. Saigo, Tetrahedron Lett., 2004, 45, 9455–9459; DOI:https://doi.org/10.1016/j.tetlet.2004.10.073.

    Article  CAS  Google Scholar 

  25. E. Goh, T. Heidelberg, R. S. D. Hussen, A. A. Salman, ACS Omega, 2019, 4, 1089–17047; DOI: https://doi.org/10.1021/acsomega.9b02809.

    Article  Google Scholar 

  26. O. Norberg, L. Deng, M. Yan, O. Ramström, Bioconjugate Chem., 2009, 20, 2364–2370; DOI: https://doi.org/10.1021/bc9003519.

    Article  CAS  Google Scholar 

  27. N. Marion, S. P. Nolan, Acc. Chem. Res., 2008, 41, 1440–1449; DOI: https://doi.org/10.1021/ar800020y.

    Article  CAS  Google Scholar 

  28. S. Akkoç, Y. Gök, L. Özer lhan, V. Kayser, Curr. Org. Synth., 2016, 13, 761–766; DOI: https://doi.org/10.2174/1570179413666151218200334.

    Article  Google Scholar 

  29. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, Eds W. L. F. Armarego, C. L. L. Chai, Elsevier, New York, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Burilov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 131–138, January, 2022.

This work was financially supported by the Russian Science Foundation (Project No. 19-13-00095).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burilov, V.A., Bogdanov, I.M., Garipova, R.I. et al. New bifunctional amphiphilic oxyethylimidazolium derivatives of calix[4]arene containing alkynyl/azide fragments: regularities of aggregation and polymerization under azide/alkyne cycloaddition conditions. Russ Chem Bull 71, 131–138 (2022). https://doi.org/10.1007/s11172-022-3386-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3386-5

Key words

Navigation