Skip to main content
Log in

New DNA-sensor based on thiacalix[4]arene-modified polydiacetylene particles

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New p-tert-butyl thiacalix[4]arene derivative in the 1,3-alternate stereoisomeric form containing two diethylenetriamine groups and pentacosa-10,12-diynoic moieties on the opposide sides of macrocyclic cavity was synthesized using the copper(i)-catalyzed azide-alkyne cycloaddition. According to the dynamic and electrophoretic light scattering data, the synthesized macrocycle forms submicron particles with the sizes 200 nm and ζ-potential equal to 43 mV. The critical aggregation concentration of the macrocycle was 0.019 mmol L−1. The obtained macrocycle intercalates into calf thymus DNA (CT DNA) to form a lipoplex. Using ethidium bromide as a fluorescent probe intercalation of obtained macrocycle into CT DNA with following formation of a lipoplex with the ζ-potential equal to −30 mV was found. The macrocycle was used for the synthesis of mixed polydiacetylene particles with N-(2-aminoethyl)pentacosa-10,12-diynamide (PCDA) as a base lipid. The highest degree of polymerization is achieved in the system with the macrocycle to PCDA ratio equal to 1 : 4. Macrocycle embedding into the polydiacetylene particles significantly increases their colorimetric response to CT DNA. The response to CT DNA as a change in the color of a solution of particles from blue to red is seen by naked eye at the CT DNA concentration starting from 20 µmol L−1, which makes the obtained particles promising for bioanalytical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Turner, Chem. Soc. Rev., 2013, 42, 3184.

    Article  CAS  PubMed  Google Scholar 

  2. M. Demeunynck, C. Bailly, W. D. Wilson, DNA and RNA Binders, Eds M. Demeunynck, C. Bailly, W. D. Wilson, Wiley-VCH, Weinheim, 2003.

  3. A. J. Jeffreys, V. Wilson, S. L. Thein, Nature, 1985, 314, 67.

    Article  CAS  PubMed  Google Scholar 

  4. M. Labib, E. H. Sargent, S. O. Kelley, Chem. Rev., 2016, 116, 9001.

    Article  CAS  PubMed  Google Scholar 

  5. J. Homola, Chem. Rev., 2008, 108, 462.

    Article  CAS  PubMed  Google Scholar 

  6. J. Wang, Nucleic Acid. Res., 2000, 28, 3011.

    Article  CAS  PubMed  Google Scholar 

  7. X. Chen, G. Zhou, X. Peng, J. Yoon, Chem. Soc. Rev., 2012, 41, 4610.

    Article  CAS  PubMed  Google Scholar 

  8. M. A. Reppy, B. A. Pindzola, Chem. Commun., 2007, 42, 4317.

    Article  CAS  Google Scholar 

  9. Y. K. Jung, T. W. Kim, J. Kim, J.-M. Kim, H. G. Park, Adv. Funct. Mater., 2008, 18, 701.

    Article  CAS  Google Scholar 

  10. E. Morin, M. Nothisen, A. Wagner, J.-S. Remy, Bioconjug. Chem., 2011, 22, 1916.

    Article  CAS  PubMed  Google Scholar 

  11. R. R. Ibragimova, V. A. Burilov, A. R. Aimetdinov, D. A. Mironova, V. G. Evtugyn, Y. N. Osin, S. E. Solovieva, I. S. Antipin, Macroheterocycles, 2016, 9, 433.

    Article  CAS  Google Scholar 

  12. M. Meldal, C. W. Tornoe, Chem. Rev., 2008, 108, 2952.

    Article  CAS  PubMed  Google Scholar 

  13. S. E. Solovieva, V. A. Burilov, I. S. Antipin, Macroheterocycles, 2017, 10, 134.

    Article  CAS  Google Scholar 

  14. V. Burilov, A. Valiyakhmetova, D. Mironova, R. Safiullin, M. Kadirov, K. Ivshin, O. Kataeva, S. Solovieva, I. Antipin, RSC Adv., 2016, 6, 44873.

    Article  CAS  Google Scholar 

  15. V. Burilov, A. Valiyakhmetova, D. Mironova, E. Sultanova, V. Evtugyn, Y. Osin, S. Katsyuba, T. Burganov, S. Solovieva, I. Antipin, New J. Chem., 2018, 42, 2942.

    Article  CAS  Google Scholar 

  16. J. Aguiar, P. Carpena, J. A. Molina-Bolivar, C. Carnero Ruiz, J. Coll. Interface Sci., 2003, 258, 116.

    Article  CAS  Google Scholar 

  17. L. S. Yakimova, D. B. Puplampu, G. A. Evtyugin, I. I. Stoikov, Russ. Chem. Bull., 2017, 66, 1515.

    Article  CAS  Google Scholar 

  18. Q. Guo, M. Lu, L. A. Marky, N. R. Kallenbach, Biochemistry, 1992, 31, 2451.

    Article  CAS  PubMed  Google Scholar 

  19. J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Quenching of Fluorescence, Kluwer Academic, New York, 1999.

    Book  Google Scholar 

  20. K. Liu, L. Zheng, C. Ma, R. Gostl, A. Herrmann, Chem. Soc. Rev., 2017, 46, 5147.

    Article  CAS  PubMed  Google Scholar 

  21. W. Thongmalai, T. Eaidkong, S. Ampornpun, R. Mungkarndee, G. Tumcharern, M. Sukwattanasinitta, S. Wacharasindhu, J. Mater. Chem., 2011, 21, 16391.

    Article  CAS  Google Scholar 

  22. W. L. F. Armarego, C. L. L. Chai, Purifi cation of Laboratory Chemicals, Eds W. L. F. Armarego, C. L. L. Chai, Elsevier, New York, 2009.

  23. N. G. Brown, R. VanderLinden, E. R. Watson, R. Qiao, C. R. R. Grace, M. Yamaguchi, F. Weissmann, J. J. Frye, P. Dube, S. Ei Cho, M. L. Actis, P. Rodrigues, N. Fujii, J. M.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Burilov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1067–1074, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiyakhmetova, A.M., Sultanova, E.D., Burilov, V.A. et al. New DNA-sensor based on thiacalix[4]arene-modified polydiacetylene particles. Russ Chem Bull 68, 1067–1074 (2019). https://doi.org/10.1007/s11172-019-2521-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2521-4

Key words

Navigation