Skip to main content
Log in

Arylation of nitromethane with sterically hindered aryl halides

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Efficient conditions for Pd-catalyzed cross-coupling of sterically hindered aryl halides with nitromethane were developed to give corresponding aryl nitromethanes. The opportunity to carry out the reaction of polynitromethylation under these conditions was demonstrated, as well as to use the obtained products in the synthesis of bisnitrile oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH, New York, 2001.

    Book  Google Scholar 

  2. H. Feuer, A. T. Nielsen, Nitro Compounds: Recent Advances in Synthesis and Chemistry, VCH Publishers, New York, 1990.

    Google Scholar 

  3. S. G. Zlotin, I. L. Dalinger, N. N. Makhova, V. A. Tartakovskii, Russ. Chem. Rev., 2020, 89, 1; DOI: https://doi.org/10.1070/RCR4908.

    Article  CAS  Google Scholar 

  4. E. Marqués-López, P. Merino, T. Tejero, R. P. Herrera, Eur. J. Org. Chem., 2009, 2401; DOI: https://doi.org/10.1002/ejoc.200801097.

  5. R. Ballini, G. Bosica, D. Fiorini, A. Palmieri, M. Petrini, Chem. Rev., 2005, 105, 933; DOI: https://doi.org/10.1021/cr040602r.

    Article  CAS  PubMed  Google Scholar 

  6. F. A. Luzzio, Tetrahedron, 2001, 57, 915; DOI: https://doi.org/10.1016/S0040-4020(00)00965-0.

    Article  CAS  Google Scholar 

  7. R. Ballini, A. Palmieri, P. Righi, Tetrahedron, 2007, 63, 12099; DOI: https://doi.org/10.1016/j.tet.2007.09.024.

    Article  CAS  Google Scholar 

  8. T. A. Davis, J. N. Johnston, Chem. Sci., 2011, 2, 1076; DOI: https://doi.org/10.1039/C1SC00061F.

    Article  CAS  PubMed  Google Scholar 

  9. J. G. Greger, S. J. P. Yoon-Miller, N. R. Bechtold, S. A. Flewelling, J. P. MacDonald, C. R. Downey, E. A. Cohen, E. T. Pelkey, J. Org. Chem., 2011, 76, 8203; DOI: https://doi.org/10.1021/jo2013516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V. Meyer, O. Stüber, Ber. Deutsch. Chem. Ges., 1872, 5, 203; DOI: https://doi.org/10.1002/cber.18720050165.

    Article  Google Scholar 

  11. N. Kornblum, H. O. Larson, R. K. Blackwood, D. D. Mooberry, E. P. Oliveto, G. E. Graham, J. Am. Chem. Soc., 1956, 78, 1497; DOI: https://doi.org/10.1021/ja01588a059.

    Article  CAS  Google Scholar 

  12. R. Ballini, L. Barboni, G. Giarlo, J. Org. Chem., 2004, 69, 6907; DOI: https://doi.org/10.1021/jo049048b.

    Article  CAS  PubMed  Google Scholar 

  13. W. D. Emmons, J. Am. Chem. Soc., 1957, 79, 5528; DOI: https://doi.org/10.1021/ja01577a053.

    Article  CAS  Google Scholar 

  14. S. Rozen, M. Kol, J. Org. Chem., 1992, 57, 7342; DOI: https://doi.org/10.1021/jo00052a061.

    Article  CAS  Google Scholar 

  15. W. D. Emmons, A. S. Pagano, J. Am. Chem. Soc., 1955, 77, 4557; DOI: https://doi.org/10.1021/ja01622a036.

    Article  CAS  Google Scholar 

  16. D. S. Base, G. Vanajatha, Synth. Commun., 1998, 28, 4531; DOI: https://doi.org/10.1080/00397919808004517.

    Article  Google Scholar 

  17. M. S. Denisov, M. V. Dmitriev, A. A. Gorbunov, V. A. Glushkov, Russ. Chem. Bull., 2019, 68, 2039; DOI: https://doi.org/10.1007/s11172-019-2664-3.

    Article  CAS  Google Scholar 

  18. K. N. Gavrilov, I. V. Chuchelkin, V. K. Gavrilov, S. V. Zheglov, I. D. Firsin, V. M. Trunina, A. V. Maximychev, A. M. Perepukhov, Russ. Chem. Bull., 2021, 70, 336; DOI: https://doi.org/10.1007/s11172-021-3090-x.

    Article  CAS  Google Scholar 

  19. A. A. Vasil’ev, A. S. Burukin, G. M. Zhdankina, S. G. Zlotin, Mendeleev Commun., 2021, 31, 400; DOI: https://doi.org/10.1016/j.mencom.2021.04.039.

    Article  Google Scholar 

  20. E. M. Vogl, S. L. Buchwald, J. Org. Chem., 2002, 67, 106; DOI: https://doi.org/10.1021/jo010953v.

    Article  CAS  PubMed  Google Scholar 

  21. J. M. Fox, X. Huang, A. Chieffi, S. L. Buchwald, J. Am. Chem. Soc., 2000, 122, 1360; DOI: https://doi.org/10.1021/ja993912d.

    Article  CAS  Google Scholar 

  22. A. E. Metz, S. Berritt, S. D. Dreher, M. C. Kozlowski, Org. Lett., 2012, 14, 760; DOI: https://doi.org/10.1021/ol203303b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Zhang, J. Zhou, J. Kan, M. Wang, W. Su, M. Hong, Chem. Commun., 2010, 46, 5455; DOI: https://doi.org/10.1039/C0CC01029D.

    Article  CAS  Google Scholar 

  24. M. Zhang, P. Hu, J. Zhou, G. Wu, S. Huang, W. Su, Org. Lett., 2013, 15, 1718; DOI: https://doi.org/10.1021/ol400507u.

    Article  CAS  PubMed  Google Scholar 

  25. D. Prim, J.-M. Campagne, D. Joseph, B. Andrioletti, Tetrahedron, 2002, 58, 2041; DOI: https://doi.org/10.1016/S0040-4020(02)00076-5.

    Article  CAS  Google Scholar 

  26. R. R. Walvoord, S. Berritt, M. C. Kozlowski, Org. Lett., 2012, 14, 4086; DOI: https://doi.org/10.1021/ol301713j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. R. Walvoord, M. C. Kozlowski, J. Org. Chem., 2013, 78, 8859; DOI: https://doi.org/10.1021/jo401249y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. P. S. Gribanov, Y. D. Golenko, M. A. Topchiy, A. N. Philippova, N. Y. Kirilenko, N. V. Krivoshchapov, G. K. Sterligov, A. F. Asachenko, M. V. Bermeshev, M. S. Nechaev, Mendeleev Commun., 2018, 28, 323; DOI: https://doi.org/10.1016/j.mencom.2018.05.032.

    Article  CAS  Google Scholar 

  29. P. S. Gribanov, G. A. Chesnokov, P. B. Dzhevakov, N. Y. Kirilenko, S. A. Rzhevskiy, A. A. Ageshina, M. A. Topchiy, M. V. Bermeshev, A. F. Asachenko, M. S. Nechaev, Mendeleev Commun., 2019, 29, 147; DOI: https://doi.org/10.1016/j.mencom.2019.03.009.

    Article  CAS  Google Scholar 

  30. G. A. Chesnokov, A. A. Ageshina, A. V. Maryanova, S. A. Rzhevskiy, P. S. Gribanov, M. A. Topchiy, M. S. Nechaev, A. F. Asachenko, Russ. Chem. Bull., 2020, 69, 2370; DOI: https://doi.org/10.1007/s11172-020-3028-8.

    Article  CAS  Google Scholar 

  31. E. V. Bermesheva, A. I. Wozniak, M. V. Bermeshev, A. F. Asachenko, M. A. Topchiy, M. S. Nechaev, M. P. Filatova, A. P. Khrychikova, Polymer Sci., Ser. B, 2020, 62, 319; DOI: https://doi.org/10.1134/S1560090420030021.

    Article  CAS  Google Scholar 

  32. A. I. Wozniak, E. V. Bermesheva, F. A. Andreyanov, I. L. Borisov, D. P. Zarezin, D. S. Bakhtin, N. N. Gavrilova, I. R. Ilyasov, M. S. Nechaev, A. F. Asachenko, M. A. Topchiy, A. V. Volkov, E. S. Finkelshtein, X.-K. Ren, M. V. Bermeshev, Reactive and Functional Polymers, 2020, 149, 104513; DOI: https://doi.org/10.1016/j.reactfunctpolym.2020.104513.

    Article  CAS  Google Scholar 

  33. E. V. Bermesheva, A. I. Wozniak, F. A. Andreyanov, G. O. Karpov, M. S. Nechaev, A. F. Asachenko, M. A. Topchiy, E. K. Melnikova, Y. V. Nelyubina, P. S. Gribanov, M. V. Bermeshev, ACS Catalysis, 2020, 10, 1663; DOI: https://doi.org/10.1021/acscatal.9b04686.

    Article  CAS  Google Scholar 

  34. S. A. Rzhevskiy, M. A. Topchiy, V. N. Bogachev, A. A. Ageshina, L. I. Minaeva, G. K. Sterligov, M. S. Nechaev, A. F. Asachenko, Mendeleev Commun., 2021, 31, 478; DOI: https://doi.org/10.1016/j.mencom.2021.07.013.

    Article  CAS  Google Scholar 

  35. S. A. Rzhevskiy, V. N. Bogachev, L. I. Minaeva, G. K. Sterligov, M. S. Nechaev, M. A. Topchiy, A. F. Asachenko, Mendeleev Commun., 2021, 31, 548; DOI: https://doi.org/10.1016/j.mencom.2021.07.037.

    Article  CAS  Google Scholar 

  36. Pat. CN111718227A, 2020.

  37. Pat. CN109837053A, 2019.

  38. Pat. CN108441157A, 2018.

  39. Pat. CN107739588A, 2018.

  40. F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018, 8, e1327; DOI: https://doi.org/10.1002/wcms.1327.

    Google Scholar 

  41. Pat. US5736748A, 1998.

  42. Pat. WO 9703107 A1, 1997.

  43. J. Hayashi, J. Furukawa, S. Yamashita, Nippon Gomu Kyokaishi, 1970, 43, 807; DOI: https://doi.org/10.2324/gomu.43.807.

    Article  CAS  Google Scholar 

  44. J. Hayashi, J. Furukawa, S. Yamashita, Nippon Gomu Kyokaishi, 1970, 43, 818; DOI: https://doi.org/10.2324/gomu.43.818.

    Article  CAS  Google Scholar 

  45. Pat. JP2010037288A, 2010.

  46. M. J. Rhoad, P. J. Flory, J. Am. Chem. Soc., 1950, 72, 2216; DOI: https://doi.org/10.1021/ja01161a096.

    Article  CAS  Google Scholar 

  47. K. Kurita, N. Hirakawa, T. Dobashi, Y. Iwakura, J. Polymer Sci.: Polymer Chem. Ed., 1979, 17, 2567; DOI: https://doi.org/10.1002/pol.1979.170170828.

    CAS  Google Scholar 

  48. R. R. Walvoord, M. C. Kozlowski, J. Org. Chem., 2013, 78, 8859; DOI: https://doi.org/10.1021/jo401249y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. F. M. Hauser, V. M. Baghdanov, J. Org. Chem., 1988, 53, 2872; DOI: https://doi.org/10.1021/jo00247a049.

    Article  CAS  Google Scholar 

  50. M. Lőkös, P. Hegyes, S. Földeák, J. Organomet. Chem., 1984, 275, 27; DOI: https://doi.org/10.1016/0022-328X(84)80573-2.

    Article  Google Scholar 

  51. R. R. Walvoord, M. C. Kozlowski, Tetrahedron Lett., 2015, 56, 3070; DOI: https://doi.org/10.1016/j.tetlet.2014.12.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Asachenko.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 59–63, January, 2022.

This work was financially supported by the Russian Science Foundation (Project No. 17-13-01076). The synthesis of nitrile oxides was carried out within the framework of the State Assignment to A. V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

No human or animal subjects were used in this study.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topchiy, M.A., Lysenko, A.N., Rasskazova, M.A. et al. Arylation of nitromethane with sterically hindered aryl halides. Russ Chem Bull 71, 59–63 (2022). https://doi.org/10.1007/s11172-022-3376-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3376-7

Key words

Navigation