Skip to main content
Log in

Copper-catalyzed direct oxidation and N-arylation of benzylamines with diaryliodonium salts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An efficient approach for the synthesis of N-arylated amides was developed via copper(II) triflate-catalyzed direct oxidation of (aryl)methylamines to primary arylamides by air and subsequent N-arylation by diaryliodonium salts. Various substituted benzylamines could be applied in the reaction, providing a series of N-arylated amides in moderate to good yields. This method showed convenient, practical, and environment friendly advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev, 2009, 38: 606–631

    Article  CAS  Google Scholar 

  2. Allen CL, Williams JMJ. Amide bond formation: beyond the myth of coupling reagents. Metal-catalysed approaches to amide bond formation. Chem Soc Rev, 2011, 40: 3405–3415

    Article  CAS  Google Scholar 

  3. Zhang DW, Zhao X, Hou JL, Li ZT. Aromatic amide foldamers: structures, properties, and functions. Chem Rev, 2012, 112: 5271–5316

    Article  CAS  Google Scholar 

  4. Garcia-Alvarez R, Crochet P, Cadierno V. Metal-catalyzed amide bond forming reactions in an environmentally friendly aqueous medium: nitrile hydrations and beyond. Green Chem, 2013, 15: 46–66

    Article  CAS  Google Scholar 

  5. Alécio AC, Bolzani VS, Young MCM, Kato MJ, Furlan M. Antifungal amide from leaves of piper hispidum. J Nat Prod, 1998, 61: 637–639

    Article  Google Scholar 

  6. Onnis V, Cocco MT, Fadda R, Congiu C. Synthesis and evaluation of anticancer activity of 2-arylamino-6-trifluoromethyl-3-(hydrazonocarbonyl) pyridines. Bioorgan Med Chem, 2009, 17: 6158–6165

    Article  CAS  Google Scholar 

  7. Goldberg I. Ueber phenylirungen bei gegenwart von kupfer als katalysator. Ber Dtsch Chem Ges, 1906, 39: 1691–1692

    Article  Google Scholar 

  8. Freeman HS, Butler JR, Freedman LD. Acetyldiarylamines by arylation of acetanilides. Some applications and limitations. J Org Chem, 1978, 43: 4975–4977

    Article  CAS  Google Scholar 

  9. Ito A, Saito T, Tanaka K, Yamabe T. Synthesis of oligo (m-aniline). Tetrahedron Lett, 1995, 36: 8809–8812

    Article  CAS  Google Scholar 

  10. Sugahara M, Ukita T. A facile copper-catalyzed Ullmann condensation: N-arylation of heterocyclic compounds containing an -NHCO- moiety. Chem Pharm Bull, 1997, 45: 719–721

    Article  CAS  Google Scholar 

  11. Lange JHM, Hofmeyer LJF, Hout FAS, Osnabrug SJM, Verveer PC, Kruse CG, Feenstra RW. Monopositive chlorocarbonium ions. Tetrahedron Lett, 2002, 43: 1101–1104

    Article  CAS  Google Scholar 

  12. Jiang YW, Ma DW. Copper-catalyzed ligand promoted Ullmann-type coupling reactions. In: Bullock RM, Ed. Catalysis without Precious Metals. Weinheim: Wiley Blackwell, 2010

    Google Scholar 

  13. Wang Y, Zeng J, Cui X. Recent progress in copper-catalyzed C-N coupling reactions. Chin J Org Chem, 2010, 30: 181–199 (in Chinese)

    CAS  Google Scholar 

  14. Guram AS, Buchwald SL. Palladium-catalyzed aromatic aminations with in situ generated aminostannanes. J. Am Chem Soc, 1994, 116: 7901–7902

    Article  CAS  Google Scholar 

  15. Paul F, Patt J, Hartwig JF. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J Am Chem Soc, 1994, 116: 5969–5970

    Article  CAS  Google Scholar 

  16. Lindley J. Copper assisted nucleophilic substitution of aryl halogen. Tetrahedron, 1984, 40: 1433–1456

    Article  CAS  Google Scholar 

  17. Yin J, Buchwald SL. Palladium-catalyzed intermolecular coupling of aryl halides and amides. Org Lett, 2000, 2: 1101–1104

    Article  CAS  Google Scholar 

  18. Yin J, Buchwald SL. Pd-catalyzed intermolecular amidation of aryl halides: the discovery that xantphos can be trans-chelating in a palladium complex. J Am Chem Soc, 2002, 124: 6043–6048

    Article  CAS  Google Scholar 

  19. Klapars A, Antilla JC, Huang X, Buchwald SL. A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles. J Am Chem Soc, 2001, 123: 7727–7729

    Article  CAS  Google Scholar 

  20. Klapars A, Huang X, Buchwald SL. A general and efficient copper catalyst for the amidation of aryl halides. J Am Chem Soc, 2002, 124: 7421–7428

    Article  CAS  Google Scholar 

  21. Crawford KR, Padwa A. Copper-catalyzed amidations of bromo substituted furans and thiophenes. Tetrahedron Lett, 2002, 43: 7365–7368

    Article  CAS  Google Scholar 

  22. Mallesham B, Rajesh BM, Reddy PR, Srinivas D, Trehan S. Highly efficient CuI-catalyzed coupling of aryl bromides with oxazolidinones using buchwald’s protocol: a short route to linezolid and toloxatone. Org Lett, 2003, 5: 963–965

    Article  CAS  Google Scholar 

  23. Deng W, Wang YF, Zou Y, Liu L, Guo QX. Amino acid-mediated Goldberg reactions between amides and iodides. Tetrahedron Lett, 2004, 45: 2311–2315

    Article  CAS  Google Scholar 

  24. Hosseinzadeh R, Tajbakhsh M, Mohadjerani M, Mehdinejad H. Copper-catalyzed amidation of aryl iodides using KF/Al2O3: an improved protocol. Synlett, 2004: 1517–1520

    Google Scholar 

  25. Strieter ER, Blackmond DG, Buchwald SL. The role of chelating diamine ligands in the Goldberg reaction: a kinetic study on the copper-catalyzed amidation of aryl iodides. J Am Chem Soc, 2005, 127: 4120–4121

    Article  CAS  Google Scholar 

  26. Zheng N, Buchwald SL. Copper-catalyzed regiospecific synthesis of N-alkylbenzimidazoles. Org Lett, 2007, 9: 4749–4751

    Article  CAS  Google Scholar 

  27. Altman RA, Hyde AM, Huang X, Buchwald SL. Orthogonal Pd- and Cu-based catalyst systems for the C- and N-arylation of oxindoles. J Am Chem Soc, 2008, 130: 9613–9620

    Article  CAS  Google Scholar 

  28. Monnier F, Taillefer M. Catalytic C-C, C-N, and C-O ullmann-type coupling reactions: copper makes a difference. Angew Chem Int Ed, 2008, 47: 3096–3099

    Article  CAS  Google Scholar 

  29. Strieter ER, Bhayana B, Buchwald SL. Mechanistic studies on the copper-catalyzed N-arylation of amides. J Am Chem Soc, 2009, 131: 78–88

    Article  CAS  Google Scholar 

  30. Wang C, Liu L, Wang W, Ma DS, Zhang H. Copper-catalyzed N-arylation of amides using (S)-N-methylpyrrolidine-2-carboxylate as the ligand. Molecules, 2010, 15: 1154–1160

    Article  CAS  Google Scholar 

  31. Wang M, Yu H, You X, Wu J, Shang Z. A general and efficient CuBr2-catalyzed N-arylation of secondary acyclic amides. Chin J Chem, 2012, 30: 2356–2362

    Article  CAS  Google Scholar 

  32. Fors BP, Dooleweerdt K, Zeng Q, Buchwald SL. An efficient system for the Pd-catalyzed cross-coupling of amides and aryl chlorides. Tetrahedron, 2009, 65: 6576–6583

    Article  CAS  Google Scholar 

  33. Su MJ, Buchwald SL. A bulky biaryl phosphine ligand allows for palladium-catalyzed amidation of five-membered heterocycles as electrophiles. Angew Chem Int Ed, 2012, 51: 4710–4713

    Article  CAS  Google Scholar 

  34. Ikawa T, Barder TE, Biscoe MR, Buchwald SL. Pd-catalyzed amidations of aryl chlorides using monodentate biaryl phosphine ligands: a kinetic, computational, and synthetic investigation. J Am Chem Soc, 2007, 129: 13001–13007

    Article  CAS  Google Scholar 

  35. Dooleweerdt K, Fors BP, Buchwald SL. Pd-catalyzed cross-coupling reactions of amides and aryl mesylates. Org Lett, 2010, 12: 2350–2353

    Article  CAS  Google Scholar 

  36. Shen QL, Hartwig JF. Lewis acid acceleration of C-N bond-forming reductive elimination from heteroarylpalladium complexes and catalytic amidation of heteroaryl bromides. J Am Chem Soc, 2007, 129: 7734–7735

    Article  CAS  Google Scholar 

  37. Xu LT, Jiang YW, Ma DW. Synthesis of 3-substituted and 2,3-disubstituted quinazolinones via Cu-catalyzed aryl amidation. Org Lett, 2012, 14: 1150–1153

    Article  CAS  Google Scholar 

  38. Tang R, Diamond SE, Neary N, Mares F. Homogeneous catalytic oxidation of amines and secondary alcohols by molecular oxygen. J Chem Soc, Chem Commun, 1978: 562–562

    Google Scholar 

  39. Kim JW, Yamaguchi K, Mizuno N. Heterogeneously catalyzed efficient oxygenation of primary amines to amides by a supported ruthenium hydroxide catalyst. Angew Chem Int Ed, 2008, 47: 9249–9251

    Article  CAS  Google Scholar 

  40. Wang Y, Kobayashi H, Yamaguchi K, Mizuno N. Manganese oxide-catalyzed transformation of primary amines to primary amides through the sequence of oxidative dehydrogenation and successive hydration. Chem Commun, 2012, 48: 2642–2644

    Article  CAS  Google Scholar 

  41. Mori K, Yamaguchi K, Mizugaki T, Ebitani K, Kaneda K. Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in thepresence of molecular oxygen. Chem Commun, 2001: 461–462

    Google Scholar 

  42. Xu W, Jiang YY, Fu H. Copper-catalyzed aerobic oxidative synthesis of primary amides from (aryl)methanamines. Synlett, 2012, 23: 801–804

    Article  CAS  Google Scholar 

  43. Xu M, Zhang XH, Shao YL, Han JS, Zhong P. The synthesis of N-arylated amides via copper(II) triflate-catalyzed direct oxygenation and N-arylation of benzylamines with aryl iodides. Adv Synth Catal, 2012, 354: 2665–2670

    Article  CAS  Google Scholar 

  44. Xiang SK, Zhang DX, Hu H, Shi JL, Liao LG, Feng C, Wang BQ, Zhao KQ, Hu P, Yang H, Yu WH. Synthesis of N-arylamides by copper-catalyzed amination of aryl halides with nitriles. Adv Synth Catal, 2013, 355: 1495–1499

    Article  CAS  Google Scholar 

  45. Zhdankin VV, Stang PJ. Recent developments in the chemistry of polyvalent iodine compounds. Chem Rev, 2002, 102: 2523–2584

    Article  CAS  Google Scholar 

  46. Zhdankin VV, Stang PJ. Chemistry of polyvalent iodine. Chem Rev, 2008, 108: 5299–5358

    Article  CAS  Google Scholar 

  47. Merritt EA, Olofsson B. Diaryliodonium salts: a journey from obscurity to fame. Angew Chem Int Ed, 2009, 48: 9052–9070

    Article  CAS  Google Scholar 

  48. Kalyani D, Deprez NR, Desai LV, Sanford MS. Oxidative C-H activation/C-C bond forming reactions: synthetic scope and mechanistic insights. J Am Chem Soc, 2005, 127: 7330–7331

    Article  CAS  Google Scholar 

  49. Deprez NR, Kalyani D, Krause A, Sanford MS. Room temperature palladium-catalyzed 2-arylation of indoles. J Am Chem Soc, 2006, 128: 4972–4973

    Article  CAS  Google Scholar 

  50. Phipps RJ, Grimster NP, Gaunt MJ. Cu(II)-catalyzed direct and site-selective arylation of indoles under mild conditions. J Am Chem Soc, 2008, 130: 8172–8174

    Article  CAS  Google Scholar 

  51. Deprez NR, Sanford MS. Synthetic and mechanistic studies of Pd-catalyzed C-H arylation with diaryliodonium salts: evidence for a bimetallic high oxidation state Pd intermediate. J Am Chem Soc, 2009, 131: 11234–11241

    Article  CAS  Google Scholar 

  52. Phipps RJ, Gaunt MJ. A meta-selective copper-catalyzed C-H bond arylation. Science, 2009, 323: 1593–1597

    Article  CAS  Google Scholar 

  53. Xiao B, Fu Y, Xu J, Gong JJ, Dai JY, Liu L. Pd(II)-catalyzed C-H activation/aryl-aryl coupling of phenol esters. J Am Chem Soc, 2010, 132: 468–469

    Article  CAS  Google Scholar 

  54. Ciana CL, Phipps RJ, Brandt JR, Meyer FM, Gaunt MJ. A highly para-selective copper(II)-catalyzed direct arylation of aniline and phenol derivatives. Angew Chem Int Ed, 2011, 50: 458–462

    Article  CAS  Google Scholar 

  55. Duong HA, Gilligan RE, Cooke ML, Phipps RJ, Gaunt MJ. Copper(II)-catalyzed meta-selective direct arylation of a-aryl carbonyl compounds. Angew Chem Int Ed, 2011, 50: 463–466

    Article  CAS  Google Scholar 

  56. Vaddula B, Leazer J, Varma RS. Copper-catalyzed ultrasound-expedited N-arylation of sulfoximines using diaryliodonium salts. Adv Synth Catal, 2012, 354: 986–990

    Article  CAS  Google Scholar 

  57. Xu J, Zhang PB, Gao YZ, Chen YY, Tang G. Zhao YF. Copper-catalyzed P-arylation via direct coupling of diaryliodonium salts with phosphorus nucleophiles at room temperature. J Org Chem, 2013, 78: 8176–8183

    Article  CAS  Google Scholar 

  58. Lv TY, Wang Z, You JS, Lan JB, Gao G. Copper-catalyzed direct aryl quaternization of N-substituted imidazoles to form imidazolium salts. J Org Chem, 2013, 78: 5723–5730

    Article  CAS  Google Scholar 

  59. Sinai Á, Mészáros Á, Gáti T, Kudar V, Palló A, Novák Z. Copper-catalyzed oxidative ring closure and carboarylation of 2-ethynylanilides. Org Lett, 2013, 15: 5654–5657

    Article  CAS  Google Scholar 

  60. Cullen SC, Shekhar S, Nere NK. Cu-catalyzed couplings of aryl iodonium salts with sodium trifluoromethanesulfinate. J Org Chem, 2013, 78: 12194–12201

    Article  CAS  Google Scholar 

  61. Wang Y, Chen C, Peng J, Li M. Copper(II)-catalyzed three-component cascade annulation of diaryliodoniums, nitriles, and alkynes: a regioselective synthesis of multiply substituted quinolines. Angew Chem Int Ed, 2013, 52: 5323–5327

    Article  CAS  Google Scholar 

  62. Su X, Chen C, Wang Y, Chen JJ, Lou ZB, Li M. One-pot synthesis of quinazoline derivatives via [2+2+2] cascade annulation of diaryliodonium salts and two nitriles. Chem Commun, 2013, 49: 6752–6754

    Article  CAS  Google Scholar 

  63. Kang SK, Lee HW, Choi WK, Choi WK, Hong RK, Kim JS. Palladium-catalyzed synthesis of arylamines from diphenyliodonium tetrafluoroborate and secondary amine. Synth Commun, 1996, 26: 4219–4224

    Article  CAS  Google Scholar 

  64. Kang SK, Lee SH, Lee D. Copper-catalyzed N-arylation of amines with hypervalent iodonium salts. Synlett, 2000, 2000: 1022–1024

    Article  Google Scholar 

  65. Guo FL; Wang LM, Wang PQ, Yu JJ, Han JW. transition-metalfree N-arylation of carbazoles and C-arylation of tetrahydrocarbazoles by using diaryliodonium salts. Asian J Org Chem, 2012, 1: 218–221

    Article  CAS  Google Scholar 

  66. Guo FL, Han JW, Mao S, Li J, Geng X, Yu JJ, Wang LM. Direct C-arylation of polyfluoroarenes with diaryliodonium salts via Pd(OAc)2-catalysis. RSC Adv, 2013, 3: 6267–6270

    Article  CAS  Google Scholar 

  67. Mao S, Guo F, Li J, Geng X, Yu JJ, Han JW, Wang LM. Copper-catalyzed direct N-arylation of naphthalimides using diaryliodonium salts. Synlett, 2013, 24: 1959–1962

    Article  CAS  Google Scholar 

  68. Xu W, Jiang YY, Fu H. Copper-catalyzed aerobic oxidative synthesis of primary amides from (aryl)methanamines. Synlett, 2012, 23: 801–804

    Article  CAS  Google Scholar 

  69. Wang Y, Kobayashi H, Yamaguchi K, Mizuno N. Manganese oxide-catalyzed transformation of primary amines to primary amides through the sequence of oxidative dehydrogenation and successive hydration. Chem Commun, 2012, 48: 2642–2644

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiMin Wang.

Additional information

Dedicated to Professor Qian Changtao on the occasion of his 80th birthday.

WANG LiMin is Professor at East China University of Science and Technology. He received his PhD in Applied Chemistry from Dalian University of Technology in 1998 under the supervision of Professor Zuwang Wu, and carried out a postdoctoral research at SIOC under the supervision of Professor Changtao Qian. He was a visiting scientist under Professor David B. Collum at Cornell University, NY, from 2009 to 2010. His main scientific interests include chemistry of rare earth metals, synthetic methodology and fine chemicals.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Mao, D., Wu, S. et al. Copper-catalyzed direct oxidation and N-arylation of benzylamines with diaryliodonium salts. Sci. China Chem. 57, 1132–1136 (2014). https://doi.org/10.1007/s11426-014-5140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5140-9

Keywords

Navigation