Skip to main content
Log in

Hydroperoxide method for the synthesis of p-tert-butylphenol

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The results of studies related to the development of a highly selective three-stage method for the synthesis of p-tert-butylphenol along with acetone are presented. The alkylation of isopropylbenzene with tert-butyl alcohol in the presence of concentrated sulfuric acid makes it possible to obtain only the para-isomer of tert-butylcumene. For the liquid-phase aerobic oxidation of p-tert-butylcumene in the presence of the phthalimide catalysts, the hydrocarbon conversion reaches 45% with a selectivity of hydroperoxide formation of 90–95%. The process of acid decomposition of p-tert-butylcumene hydroperoxide to p-tert-butylphenol and acetone was studied. Conditions providing the production of p-tert-butylphenol in a yield of 90% were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Saha, M. K. Hossain, M. Ashaduzzama, S. T. Afroza, M. Galib, Bangladesh J. Sei. Ind. Res., 2009, 44, 131; DOI: https://doi.org/10.3329/bjsir.v44i1.2722.

    Article  CAS  Google Scholar 

  2. J. L. Atwood, L. J. Barbour, P. K. Thallapally, T. B. Wirsig, Chem. Commun., 2005, 51; DOI: https://doi.org/10.1039/B416752J.

  3. G. D. Kharlamovich, Yu. V. Churkin, Fenoly [Phenols], Khimiya, Moscow, 1974, 376 pp. (in Russian).

    Google Scholar 

  4. A. A. Fat´yanova, A. S. Gusak, O. A. Trofimova, P. E. Prokhorova, Chimica Techno Acta, 2016, 3, 134; DOI: https://doi.org/10.15826/chimtech.2016.3.2.010.

    Article  Google Scholar 

  5. R. R. Talipova, R. U. Kharrasov, V. A. Veklov, A. D. Badikova, B. I. Kutepov, Petrol. Chem., 2017, 57, 395; DOI: https://doi.org/10.1134/S0965544117050115.

    Article  CAS  Google Scholar 

  6. I. O. Voronin, T. N. Nesterova, B. S. Strelchik, E. A. Zhuravskii, Kinet. Catal., 2014, 55, 705; DOI: https://doi.org/10.1134/S0023158414060147.

    Article  CAS  Google Scholar 

  7. A. V. Terekhov, L. N. Zanaveskin, S. N. Khadzhiev, Petrol. Chem., 2017, 57, 714; DOI: https://doi.org/10.1134/S096554411708014X.

    Article  CAS  Google Scholar 

  8. US Pat. 3849507; Nov. 19, 1974; https://patentimages.storage.googleapis.com/02/29/e7/2eb0579b936e77/US3849507.pdf.

  9. US Pat. 4469908; Sep. 4, 1984; https://patentimages.storage.googleapis.com/f6/60/c7/f2f16e360eb639/US4469908.pdf.

  10. A. S. Dneprovskii, A. N. Kasatochkin, Russ. J. Org. Chem., 1981, 17, 793.

    CAS  Google Scholar 

  11. T. Yamamoto, Bull. Chem. Soc. Jpn, 1967, 40, 642.

    Article  CAS  Google Scholar 

  12. E. M. Yarkina, E. A. Kurganova, A. S. Frolov, G. N. Koshel, T. N. Nesterova, V. A. Shakun, S. A. Spiridonov, Fine Chem. Technol., 2021, 16, 26; DOI: https://doi.org/10.32362/2410-6593-2020-161-26-35.

    Article  CAS  Google Scholar 

  13. N. S. Zefirov, Khimicheskaya entsiklopediya [Chemical Encyclopedia], Bol´shaya Rossiiskaya Entsikopediya, Moscow, 1998, Vol. 5, 783 pp. (in Russian).

    Google Scholar 

  14. V. M. Zakoshanskii, Fenol i atseton: analiz tekhnologii, kinetiki i mekhanizma osnovnykh reaktsii [Phenol and Acetone: Analysis of Technologies, Kinetics, and Mechanisms of Main Reactions], Khimizdat, St. Petersburg, 2009, 605 pp. (in Russian).

    Google Scholar 

  15. E. M. Yarkina, E. A. Kurganova, A. S. Frolov, N. V. Lebedeva, G. N. Koshel´, Petrol. Chem., 2019, 59, 1245; DOI: https://doi.org/10.1134/S0965544119110161.

    Article  CAS  Google Scholar 

  16. I. B. Krylov, A. S. Budnikov, A. V. Lastovko, Y. A. Ibatov, G. I. Nikishin, A. O. Terent´ev, Russ. Chem. Bull., 2019, 68, 1454; DOI: https://doi.org/10.1007/s11172-019-2577-1.

    Article  CAS  Google Scholar 

  17. E. A. Kurganova, V. N. Sapunov, G. N. Koshel, A. S. Frolov, Russ. Chem. Bull., 2016, 65, 2115; DOI: https://doi.org/10.1007/s11172-016-1560-3.

    Article  CAS  Google Scholar 

  18. B. Orlińska, J. Zawadiak, Reac. Kin. Mech. Cat., 2013, 110, 15; DOI: https://doi.org/10.1007/s11144-013-0581-2.

    Article  Google Scholar 

  19. V. N. Sapunov, E. A. Kurganova, G. N. Koshel, Int. J. Chem. Kinet., 2018, 50, 3; DOI: https://doi.org/10.1002/kin.21135.

    Article  CAS  Google Scholar 

  20. E. M. Yarkina, E. A. Kurganova, A. S. Frolov, G. N. Koshel´, E. M. Denisova, Russ. J. Appl. Chem., 2019, 92, 1524; DOI: https://doi.org/10.1134/S1070427219110090.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kurganova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1951–1956, October, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurganova, E.A., Frolov, A.S., Korshunova, A.I. et al. Hydroperoxide method for the synthesis of p-tert-butylphenol. Russ Chem Bull 70, 1951–1956 (2021). https://doi.org/10.1007/s11172-021-3302-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3302-4

Key words

Navigation