Skip to main content
Log in

Sorption of pyridine-3-carboxylic acid and silver(I) from multicomponent aqueous solutions with Dowex-50 sulfonic cation exchange resin

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The equilibrium distribution of pyridine-3-carboxylic acid, silver(I) ions, and protons between aqueous solutions and Dowex-50 sulfonic cation exchange resin was studied. The counter-ion composition of the cation exchange resin was determined by solving a system of equations for binary ion exchange selectivity coefficients and the mass balance equation. According to FT IR and CPMAS 13C NMR spectroscopy of solid samples, pyridine-3-carboxylic acid exists in the Dowex-50 phase as [H2L]+ cations. High distribution constants indicate that pyridine-3-carboxylic acid and silver can be concentrated in the polymer phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Mashkovskii, Lekarstvennye sredstva [Pharmaceutical Drugs], Novaya volna, Moscow, 2012, 1216 pp. (in Russian).

    Google Scholar 

  2. C. V. Dushina, V. A. Sharnin, Izv. Vuzov. Khim. Khim. Tekhnol. [Bull. Higher School. Chem. Chem. Eng.], 2013, 56, 3 (in Russian).

    CAS  Google Scholar 

  3. S. Cakir, E. Bicer, H. Icbudak, P. Naumov, H. Korkmaz, O. Cakir, Pol. J. Chem., 2001, 75, 371.

    CAS  Google Scholar 

  4. S. R. Batten, A. R. Harris, Acta Cryst. E, 2001, 57, m9; DOI: https://doi.org/10.1107/S1600536800018742.

    Article  CAS  Google Scholar 

  5. J. Y. Lu, E. E. Kohler, Inorg. Chem. Commun., 2002, 5, 600; DOI: https://doi.org/10.1016/S1387-7003(02)00490-2.

    Article  CAS  Google Scholar 

  6. Y. Zhou, W. Bi, X. Li, J. Chen, R. Cao, M. Hong, Acta Cryst. E, 2003, 59, m356; DOI: https://doi.org/10.1107/S1600536803010675.

    Article  CAS  Google Scholar 

  7. C. W. Yeh, M. C. Suen, H. L. Hu, J. D. Chen, J. C. Wang, Polyhedron, 2004, 23, 1947; DOI: https://doi.org/10.1016/j.poly.2004.04.026.

    Article  CAS  Google Scholar 

  8. J. Zhang, Z. J. Li, Y. H. Wen, Y. Kang, Y. Y. Qin, Y. G. Yao, Acta Cryst. C, 2004, 60, m389; DOI: https://doi.org/10.1107/S0108270104010558.

    Article  Google Scholar 

  9. F. Ch. Liu, Y. F. Zeng, J. R. Li, X. H. Bu, H. J. Zhang, J. Ribas, Inorg. Chem., 2005, 44, 7298; DOI: https://doi.org/10.1021/ic051030b.

    Article  CAS  Google Scholar 

  10. M. M. Najafpour, T. Lis, M. Hołyn’ska, Inorg. Chim. Acta, 2007, 360, 3452; DOI: https://doi.org/10.1016/j.ica.2007.04.012.

    Article  CAS  Google Scholar 

  11. M. M. Najafpour, V. McKee, Anal. Sci., 2007, 23, 23; DOI: https://doi.org/10.2116/analscix.23.x23.

    Google Scholar 

  12. A. E. Wasson, R. L. LaDuca, Polyhedron, 2007, 26, 1001; DOI: https://doi.org/10.1016/j.poly.2006.09.069.

    Article  CAS  Google Scholar 

  13. X. Hao, Y.-G. Wei, Q. Liu, S.-W. Zhang, Acta Cryst. C, 2000, 56, 296; DOI: https://doi.org/10.1107/S0108270199015358.

    Article  Google Scholar 

  14. A. Anagnostopoulos, M. G. B. Drew, R. A. Walton, J. Chem. Soc., Chem. Commun., 1969, 19, 1241; DOI: https://doi.org/10.1039/C29690001241.

    Article  Google Scholar 

  15. J. Hong-Bin, Y. Jie-Hui, X. Ji-Qing, Y. Ling, D. Hong, J. Wei-Jie, W. Tie-Gang, X. Jia-Ning, L. Zeng-Chun, J. Mol. Struct., 2002, 641, 23; DOI: https://doi.org/10.1016/S0022-2860(02)00168-0.

    Article  Google Scholar 

  16. B. C. Marina, D. Paolo, G. Carlo, M. Amos, N. Mario, Gazz. Chim. Ital., 1971, 101, 815.

    Google Scholar 

  17. W. E. Broderick, M. R. Pressprich, U. Geiser, R. D. Willett, J. I. Legg, Inorg. Chem., 1986, 25, 3372; DOI: https://doi.org/10.1021/ic00239a012.

    Article  CAS  Google Scholar 

  18. F. Jaber, F. Charbonnier, R. Fauer, M. Petit-Ramel, Z. Kristallogr., 1994, 209, 536; DOI: https://doi.org/10.1524/zkri.1994.209.6.536.

    CAS  Google Scholar 

  19. G. Smith, A. N. Reddy, K. A. Byriet, C. H. L. Kennrad, Polyhedron, 1994, 13, 2425; DOI: https://doi.org/10.1016/S0277-5387(00)88156-5.

    Article  CAS  Google Scholar 

  20. K. Per-Olov, G. Jekabs, F. Mats, S. Fredrik, Polyhedron, 2001, 20, 2747; DOI: https://doi.org/10.1016/S0277-5387(01)00883-X.

    Article  Google Scholar 

  21. The IUPAC Stability Constants Database;http://www.acadsoft.co.uk/scdbase/scdbase.htm.

  22. S. Freiberg, X. X. Zhu, Int. J. Pharm., 2004, 282, 1; DOI: https://doi.org/10.1016/j.ijpharm.2004.04.013.

    Article  CAS  Google Scholar 

  23. Yu. S. Tarakhovskii, Intellektual’nye lipidnye nanokonteinery v adresnoi dostavke lekarstvennykh veshchestv [Smart Lipid Nanocontainers in the Targeted Drug Delivery], Izd. LKI, Moscow, 2011, 280 pp. (in Russian).

    Google Scholar 

  24. H. N. Altshuler, E. V. Ostapova, O. H. Altshuler, G. Yu. Shkurenko, N. V. Malyshenko, S. Yu. Lyrshchikov, R. S. Parshkov, Russ. J. Appl. Chem., 2019, 92, 523; DOI: https://doi.org/10.1134/S1070427219040086.

    Article  CAS  Google Scholar 

  25. E. V. Ostapova, H. N. Altshuler, Butlerovskie soobshcheniya [Butlerov Reports], 2020, 64, 112 (in Russian).

    Google Scholar 

  26. H. N. Altshuler, G. Yu. Shkurenko, E. V. Ostapova, O. H. Altshuler, Russ. Chem. Bull., 2017, 66, 1177; DOI: https://doi.org/10.1007/s11172-017-1869-6.

    Article  CAS  Google Scholar 

  27. H. N. Altshuler, G. Yu. Shkurenko, O. H. Altshuler, Russ. Chem. Bull., 2018, 67, 1927; DOI: https://doi.org/10.1007/s11172-018-2309-y.

    Article  CAS  Google Scholar 

  28. The International Pharmacopoeia;http://apps.who.int/phint/en/p/docf.

  29. P. Gans, A. Sabatini, A. Vacca, IIySS 2009, IIyperquad Simulation and Speciation, Protonic Software, Leeds (UK), Universita di Firenze, Firenze, 2009.

    Google Scholar 

  30. F. Wang, K. A. Berglund, Ind. Eng. Chem. Res., 2000, 39, 2101; DOI: https://doi.org/10.1021/ie9901426.

    Article  CAS  Google Scholar 

  31. O. H. Altshuler, H. N. Altshuler, Comput. Mater. Sci., 2006, 36, 207; DOI: https://doi.org/10.1016/j.commatsci.2004.12.081.

    Article  CAS  Google Scholar 

  32. F. Valslow, G. E. Boyd, J. Phys. Chem., 1966, 70, 2295; DOI: https://doi.org/10.1021/j100879a035.

    Article  Google Scholar 

  33. E. Pretsch, P. Bullmann, C. Affolter, Structure Determination of Organic Compounds: Tables of Spectral Data, Springer, 2000, 438 pp.

  34. A. E. Fazary, Y.-H. Ju, A. Q. Rajhi, A. S. Alshihri, M. Y. Alfaifi, M. A. Alshehri, K. A. Saleh, S. E. I. Elbehairi, K. F. Fawy, H. S. M. Abd-Rabboh, Open Chem., 2016, 14, 287; DOI: https://doi.org/10.1515/chem-2016-0028.

    Article  CAS  Google Scholar 

  35. A. Lal, N. Shukla, V. B. Singh, D. Kumar Singh, J. Chem. Pharm. Res., 2016, 8, 136.

    CAS  Google Scholar 

  36. P. Singh, N. P. Singh, R. A. Yadav, J. Chem. Pharm. Res., 2011, 3, 737.

    CAS  Google Scholar 

  37. G. W. A. Fowles, R. W. Matthews, R. A. Walton, J. Chem. Soc. A, 1968, 1108; DOI: https://doi.org/10.1039/J19680001108.

  38. Morsy A. M. Abu-Youssef, Polyhedron, 2005, 24, 1829; DOI: https://doi.org/10.1016/j.poly.2005.05.026.

    Article  CAS  Google Scholar 

  39. L. P. Abramova, O. G. Altshuler, N. V. Malyshenko, E. V. Ostapova, L. A. Sapozhnikova, G. Yu. Shkurenko, V. Yu. Malysheva, A. N. Popova, H. N. Altshuler, Khimiya v interesakh ustoichivogo razvitiya [Chemistry for Sustainable Development], 2015, 23, 151; DOI: https://doi.org/10.15372/KhUR20150208 (in Russian).

    CAS  Google Scholar 

  40. A. A. Taqa, I. A. Al-Kassar, Sh. A. Iyoob, Inter. J. Res. Appl. Sci.&Eng. Technol. (IJRASET), 2014, 2, 350; https://www.ijraset.com/fileserve.php?FID-1311.

    Google Scholar 

  41. Free Online Spectral Library from Bio-Rad;https://spectra-base.com/compound/7SSYqD9hehI.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The study was carried out using the research equipment of the Center for Collective Use of Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences.

The study was performed within the state assignment for the Institute of Coal Chemistry and Chemical Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences (Project No. AAAA-A17-117041910146-5).

Published in Russian in Izyestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 75–80, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altshuler, H.N., Shkurenko, G.Y., Lyrshchikov, S.Y. et al. Sorption of pyridine-3-carboxylic acid and silver(I) from multicomponent aqueous solutions with Dowex-50 sulfonic cation exchange resin. Russ Chem Bull 70, 75–80 (2021). https://doi.org/10.1007/s11172-021-3059-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3059-9

Key words

Navigation