Skip to main content
Log in

Sorption of pyridine-3-carboxylic acid by the Dowex-50 sulfonic cation-exchange resin in the NiII and CuII forms

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The equilibrium distribution of components between aqueous solutions containing pyridine-3-carboxylic acid and Dowex-50 sulfonic cation-exchange resin in the NiII or CuII form was studied. The counterionic composition of the sulfonic cation-exchange resin was determined by solving a system of equations for the selectivity coefficients of the binary ion exchanges and the material balance equation. The experimental and calculated results for the sorption processes and the data of FT-IR spectroscopy and 13C CPMAS NMR spectroscopy of solid samples showed that pyridine-3-carboxylic acid in the Dowex-50 sulfonic cation-exchange resin is presented by the protonated [H2L]+ form or [CuHL]2+ cations. High distribution coefficients suggest that pyridine-3-carboxylic acid and metal cations (CuII, NiII) can be concentrated in the Dowex-50 sulfonic cation-exchange resin. The Dowex-50 sulfonic cation-exchange resin appears to be useful as a container for drugs based on pyridine-3-carboxylic acid and divalent transition metal cations, such as CuII and NiII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Smith, M. P. Callahan, P. A. Gerakines, J. P. Dworkin, C. H. House, Geochim. Cosmochim. Acta, 2014, 136, 1; DOI: https://doi.org/10.1016/j.gca.2014.04.001.

    Article  CAS  Google Scholar 

  2. B. M. McMurtry, A. M. Turner, S. E. Saito, R. I. Kaiser, J. Chem. Phys., 2016, 472, 173; DOI: https://doi.org/10.1016/j.chemphys.2016.03.010.

    CAS  Google Scholar 

  3. L. A. Carlson, J. Intern. Med., 2005, 258, 94.

    Article  CAS  PubMed  Google Scholar 

  4. M. D. Mashkovskii, Lekarstvennye sredstva [Medical Remedies], Novaya Volna, Moscow, 2012, 1216 pp. (in Russian).

    Google Scholar 

  5. W. Wang, A. Basinger, R. A. Neese, B. Shane, S. A. Myong, M. Christiansen, M. K. Hellerstein, Am. J. Physiol. Endocrinol. Metab., 2001, 43, 540.

    Article  Google Scholar 

  6. F. Karpe, K. N. Frayn, Lancet, 2004, 363, 1892.

    Article  CAS  PubMed  Google Scholar 

  7. R. Brutts, L. Lundholm, Atherosclerosis, 1971, 14, No. 1, 91; DOI: https://doi.org/10.1016/0021-9150(71)90041-4.

    Article  Google Scholar 

  8. S. Tavintharan, M. L. Kashyap, Curr. Atheroscler. Rep., 2001, 3, 74.

    Article  CAS  PubMed  Google Scholar 

  9. S. H. Ganji, V. S. Kammana, M. L. Kashyap, J. Nutr. Biochem., 2003, 14, 295.

    Article  CAS  Google Scholar 

  10. O. A. Minyaeva, V. I. Safonov, Butlerov Commun., 2016, 46, No. 6, 124; DOI: jbc-02/16-46-6-124.

    Google Scholar 

  11. F. Wang, K. A. Berglund, Ind. Eng. Chem. Res., 2000, 39, 2101; DOI: https://doi.org/10.1021/ie9901426.

    Article  CAS  Google Scholar 

  12. A. Y. Rajhi, Y.-H. Ju, A. E. Angkawijaya, A. E. Fazary, J. Solut. Chem., 2013, 42, 2409; DOI: https://doi.org/10.1007/s10953013-0116-5.

    Article  CAS  Google Scholar 

  13. A. Rahim, S. Hussain, M. Farooqui, Int. J. Chem. Sci., 2014, 12, 1299.

    Google Scholar 

  14. J. Urbanska, H. Podsiadly, Polyhedron, 2013, 60, 130; DOI: https://doi.org/10.1016/j.poly.2013.05.023.

    Article  CAS  Google Scholar 

  15. S. Hussain, A. Rahim, M. Farooqui, J. Adv. Sci. Res., 2012, 3, 68.

    CAS  Google Scholar 

  16. E. Hernowo, A. E. Angkawijaya, A. E. Fazary, S. Ismadji, Y.-H. Ju, J. Chem. Eng. Data, 2011, 56, 4549; DOI: https://doi.org/10.1021/je200819r.

    Article  CAS  Google Scholar 

  17. J. Urbanska, H. Podsiadly, J. Electroanal. Chem., 2009, 637, 55; DOI: https://doi.org/10.1016/j.jelechem.2009.09.030.

    Article  CAS  Google Scholar 

  18. M. S. Nair, M. A. Neelakantan, S. S. Sunu, Ind. J. Chem. Sect. A, 1999, 38A, 1307; http://nopr.niscair.res.in/handle/123456789/16138.

    CAS  Google Scholar 

  19. T. Yu. Sergeeva, I. R. Nizameev, K. V. Kholin, M. K. Kadirov, A. I. Samigullina, A. T. Gubaidullin, R. K. Mukhitova, A. Yu. Ziganshina, I. S. Antipin, Russ. Chem. Bull., 2020, 69, 351; DOI: https://doi.org/10.1007/s11172-020-2767-x.

    Article  CAS  Google Scholar 

  20. Sang-Chul Shin, Cheong-Weon Cho, J. Pharmaceut. Invest., 1997, 27, 39.

    CAS  Google Scholar 

  21. E. V. Ostapova, G. Y. Shkurenko, S. Y. Lyrschikov, H. N. Altshuler, Butlerov Commun., 2016, 48, No. 10, 37; DOI: jbc-02/16-48-10-37"/>.

    Google Scholar 

  22. H. N. Altshuler, G. Y. Shkurenko, N. V. Malyshenko, S. Y. Lyrschikov, Butlerov Commun., 2018, 54, No. 4, 82; DOI: jbc-02/18-54-4-82.

    Google Scholar 

  23. H. N. Altshuler, G. Y. Shkurenko, S. Y. Lyrschikov, Butlerov Commun., 2020, 61, No. 2, 97; DOI: jbc-02/20-61-2-97.

    Article  Google Scholar 

  24. H. N. Altshuler, E. V. Ostapova, O. H. Altshuler, G. Yu. Shkurenko, N. V. Malyshenko, S. Yu. Lyrshchikov, R. S. Parshkov, Russ. J. Appl. Chem., 2019, 92, 523; DOI: https://doi.org/10.1134/S1070427219040086.

    Article  CAS  Google Scholar 

  25. H. N. Altshuler, G. Yu. Shkurenko, E. V. Ostapova, O. H. Altshuler, Russ. Chem. Bull., 2017, 66, 1177; DOI: https://doi.org/10.1007/s11172-017-1869-6.

    Article  CAS  Google Scholar 

  26. H. N. Altshuler, E. V. Ostapova, N. V. Makyshenko, O. H. Altshuler, Russ. Chem. Bull., 2017, 66, 1854; DOI: https://doi.org/10.1007/s11172-017-1957-7.

    Article  CAS  Google Scholar 

  27. H. N. Altshuler, G. Yu. Shkurenko, S. Yu. Lyrshchikov, O. H. Altshuler, Russ. Chem. Bull., 2021, 70, 75.

    Article  CAS  Google Scholar 

  28. The International Pharmacopoeia, 5th ed.; http://apps.who.int/phint/en/p/docf.

  29. K. W. Pepper, D. Reichenberg, D. K. Hale, J. Chem. Soc., 1952, 3129; DOI: https://doi.org/10.1039/JR9520003129.

  30. P. Gans, A. Sabatini, A. Vacca, HySS 2009, Hyperquad Simulation and Speciation, Protonic Software, Leeds (UK); Universita di Firenze, Firenze (Italy), 2009.

    Google Scholar 

  31. The IUPAC Stability Constants Database; http://www.acadsoft.co.uk/scdbase/scdbase.htm.

  32. E. V. Ostapova, S. Y. Lyrschikov, H. N. Altshuler, Butlerov Commun., 2020, 64, No. 10, 55; DOI: https://doi.org/10.37952/ROI-jbc-01/20-64-10-55.

    Article  Google Scholar 

  33. O. H. Altshuler, H. N. Altshuler, Comput. Mater. Sci., 2006, 36, 207; DOI: https://doi.org/10.1016/j.commatsci.2004.12.081

    Article  CAS  Google Scholar 

  34. O. D. Bonner, L. L. Smith, J. Phys. Chem., 1957, 61, 1614.

    Article  CAS  Google Scholar 

  35. O. D. Bonner, R. R. Pruett, J. Phys. Chem., 1959, 63, 1417.

    Article  CAS  Google Scholar 

  36. O. D. Bonner, R. R. Pruett, J. Phys. Chem., 1959, 63, 1420.

    Article  CAS  Google Scholar 

  37. J. Bjerrum, Metal Ammine Formation in Aqueous Solution: Theory of the Reversible Step Reactions, P. Haase and Son, Copenhagen, Denmark, 1957, 296 pp.

    Google Scholar 

  38. A. E. Fazary, Y.-H. Ju, A. Q. Rajhi, A. S. Alshihri, M. Y. Alfaifi, M. A. Alshehri, K. A. Saleh, S. E. I. Elbehairi, K. F. Fawy, H. S. M. Abd-Rabboh, Open Chem., 2016, 14, 287; DOI: https://doi.org/10.1515/chem-2016-0028.

    Article  CAS  Google Scholar 

  39. A. Lal, N. Shukla, V. B. Singh, D. Kumar Singh, J. Chem. Pharm. Res., 2016, 8, 136

    CAS  Google Scholar 

  40. P. Singh, N. P. Singh, R. A. Yadav, J. Chem. Pharm. Res., 2011, 3, 737

    CAS  Google Scholar 

  41. Morsy A. M. Abu-Youssef, Polyhedron, 2005, 24, 1829; DOI: https://doi.org/10.1016/j.poly.2005.05.026.

    Article  CAS  Google Scholar 

  42. P. Koczon, J. Cz. Dobrowolski, W. Lewandowski, A. P. Mazurekd, J. Mol. Struct., 2003, 655, 89.

    Article  CAS  Google Scholar 

  43. G. V. Yukhnevich, Infrakrasnaya spektroskopiya vody [Infrared Spectroscopy of Water], Nauka, Moscow, 1973, 208 pp. (in Russian).

    Google Scholar 

  44. E. Pretsch, P. Bullmann, C. Affolter, Structure Determination of Organic Compounds: Tables of Spectral Data, Springer, New York, 2000, 438 pp.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Altshuler.

Additional information

This work was carried out in terms of state assignment of the Federal Research Center of Coal and Coal Chemistry (Siberian Branch of Russian Academy of Sciences) (Project No 121031500194-5) using equipment of the Center for Collective Use of the Federal Research Center of Coal and Coal Chemistry (Siberian Branch of Russian Academy of Sciences).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1421–1428, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altshuler, H.N., Malyshenko, N.V., Nekrasov, V.N. et al. Sorption of pyridine-3-carboxylic acid by the Dowex-50 sulfonic cation-exchange resin in the NiII and CuII forms. Russ Chem Bull 70, 1421–1428 (2021). https://doi.org/10.1007/s11172-021-3235-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3235-y

Key words

Navigation