Skip to main content
Log in

Fabrication of TNU-9 catalysts containing copper by organic–inorganic hybrid method for the selective catalytic reduction in NOx by NH3

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid materials with highly ordered pore structure are based on the introduction of organic bridging groups on the channel walls of the pore structure. The introduction of organic bridging groups not only modulates the physical and chemical properties of the prepared mesoporous materials, but also improves the functionalization of the mesoporous materials. In this thesis, we mainly prepared TNU-9 catalysts containing copper by organic–inorganic hybrid method and investigated the NH3-SCR properties of the materials. The results showed that the NOx conversion of Cu@PMO-TNU-9-2% was more than 99% at 350 °C, and N2 selectivity was nearly 99% at 300–450 °C. In addition, the resistance test results showed that the conversion of NOx could still reach more than 90% within 7 h with the introduction of 100 ppm SO2 at 300 °C and a gas flow rate of 100 ml/min. Furthermore, the NOx conversion of Cu@PMO-TNU-9–2% catalyst decreased to 90.5% and then was stabilized when 100 ppm water vapor was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Qi, Z.G. Sun, T. Yang, J. Wang, Q. Tang, T.Z. Huang, C.J. Tang, F. Gao, L. Dong, J. Colloid Interface Sci. 613, 320 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. F. Han, H. Sun, Z.C. Zhao, Y.X. Xu, H. Dong, W.W. Liu, L. Sun, Z.L. Wang, G.J. Hou, M. Kitano, W. Li, M.Q. Shen, H.J. Chen, ACS Catal. 12, 2403 (2022)

    Article  CAS  Google Scholar 

  3. R.A. Grinsted, H.W. Jen, C.N. Montreuil, M.J. Rokosz, M. Shelef, Zeolites 13, 602 (1993)

    Article  CAS  Google Scholar 

  4. B.I. Palella, L. Lisi, R. Pirone, G. Russo, M. Notaro, Kinet. Catal. 47, 728 (2006)

    Article  CAS  Google Scholar 

  5. W.Y. Zhi, Y.T. Liu, S.L. Shan, C.J. Jiang, H. Wang, J.X. Lu, J. CO2 Util. 50, 7 (2021)

    Article  Google Scholar 

  6. J.H. Kwak, D. Tran, S.D. Burton, J. Szanyi, J.H. Lee, C.H.F. Peden, J. Catal. 287, 203 (2012)

    Article  CAS  Google Scholar 

  7. S.B. Hong, E.G. Lear, P.A. Wright, W.Z. Zhou, P.A. Cox, C.H. Shin, J.H. Park, I.S. Nam, J. Am. Chem. Soc. 126, 5817 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. S.B. Hong, H.K. Min, C.H. Shin, P.A. Cox, S.J. Warrender, P.A. Wright, J. Am. Chem. Soc. 129, 10870 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. H. Liu, S.A. Yang, S.J. Wu, F.P. Shang, X.F. Yu, C. Xu, J.Q. Guan, Q.B. Kan, Energy 36, 1582 (2011)

    Article  CAS  Google Scholar 

  10. N. Kosinov, C. Liu, E.J.M. Hensen, E.A. Pidko, Chem. Mater. 30, 3177–3183 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Meti, D.B. Mahadik, K.Y. Lee, Q. Wang, K. Kanamori, Y.D. Gong, H.H. Park, Mater. Des. 222, 21 (2022)

    Article  Google Scholar 

  12. H.N. Wang, L. Huang, J. Qing, T.Z. Ma, W.Q. Huang, R.Y. Chen, J. Inorg. Mater. 37, 991 (2022)

    Article  Google Scholar 

  13. I. Heo, S. Sung, M.B. Park, T.S. Chang, Y.J. Kim, B.K. Cho, S.B. Hong, J.W. Choung, I.S. Nam, ACS Catal. 9, 9800 (2019)

    Article  CAS  Google Scholar 

  14. J.L. Chen, G. Peng, T.Y. Liang, W.B. Zhang, W. Zheng, H.R. Zhao, L. Guo, X.Q. Wu, Nanomaterials 10, 20 (2020)

    Google Scholar 

  15. Y.Z. Xi, C.S. Su, N.A. Ottinger, Z.G. Liu, Appl. Catal. B-Environ. 284, 10 (2021)

    Article  Google Scholar 

  16. C. Zhong, C.X. Wu, H.Y. Zuo, Z. Gu, Can. J. Chem. Eng. 100, 3263 (2022)

    Article  CAS  Google Scholar 

  17. C.H. Lin, R.K. Kankala, P. Busa, C.H. Lee, Int. J. Mol. Sci. 21, 19 (2020)

    Google Scholar 

  18. Q.Y. Yang, Q.Q. Cao, Y.L. Zhang, X.F. Xu, C.X. Deng, R. Kumar, X.M. Zhu, X.J. Wang, H. Liang, Z.F. Chen, J. Inorg. Biochem. 211, 11 (2020)

    Article  Google Scholar 

  19. A. Corma, D. Das, H. Garcia, A. Leyva, J. Catal. 229, 322 (2005)

    Article  CAS  Google Scholar 

  20. B.K. Bahuleyan, B.R. Jermy, I.Y. Ahn, H. Suh, D.W. Park, C.S. Ha, I. Kim, Catal. Commun. 11, 252 (2009)

    Article  CAS  Google Scholar 

  21. F. Gao, N.M. Washton, Y.L. Wang, M. Kollar, J. Szanyi, C.H.F. Peden, J. Catal. 331, 25 (2015)

    Article  CAS  Google Scholar 

  22. K. Karami, S. Hashemi, J. Lipkowski, F. Mardani, A.A. Momtazi-Borojeni, Z.M. Lighvan, Appl. Organomet. Chem. 31, 16 (2017)

    Google Scholar 

  23. Y.Y. Ma, Y. Liu, Z.F. Li, C. Geng, X.F. Bai, D.X. Cao, Environ. Sci. Pollut. Res. 27, 9935 (2020)

    Article  CAS  Google Scholar 

  24. D. Deng, S.J. Deng, D.D. He, Z.H. Wang, Z.P. Chen, Y. Ji, G.P. Yan, G.J. Hou, L.C. Liu, H. He, J. Rare Earths 39, 969 (2021)

    Article  CAS  Google Scholar 

  25. L. Martin, H. Martinez, D. Poinot, B. Pecquenard, F. Le Cras, J. Phys. Chem. C 117, 4421 (2013)

    Article  CAS  Google Scholar 

  26. X. Zhu, L.Q. Zhang, G.F. Chen, T. Wang, Y. Dong, C.Y. Ma, J. Energy Inst. 101, 243 (2022)

    Article  CAS  Google Scholar 

  27. M.T. Portilla, F.J. Llopis, C. Martinez, S. Valencia, A. Corma, Appl. Catal. A-Gen. 393, 257 (2011)

    Article  CAS  Google Scholar 

  28. H.Y. Chen, Z.H. Wei, M. Kollar, F. Gao, Y.L. Wang, J. Szanyi, C.H.F. Peden, Catal. Today 267, 17 (2016)

    Article  CAS  Google Scholar 

  29. J.W. Chen, R. Zhao, R.X. Zhou, ChemCatChem 10, 5182 (2018)

    Article  CAS  Google Scholar 

  30. Y. Wang, G.G. Li, S.Q. Zhang, X.Y. Zhang, X. Zhang, Z.P. Hao, Chem. Eng. J. 393, 13 (2020)

    Google Scholar 

  31. J. Yang, Z.F. Li, C.L. Yang, Y.Y. Ma, Y.Y. Li, Q. Zhang, K. Song, J.X. Cui, J. Solid State Chem. 305, 9 (2022)

    Article  Google Scholar 

  32. Y.Y. Ma, Z.F. Li, N. Zhao, Y.L. Teng, J. Rare Earths 39, 1217 (2021)

    Article  CAS  Google Scholar 

  33. C. Peng, R. Yan, H.G. Peng, Y.Y. Mi, J. Liang, W.M. Liu, X. Wang, G. Song, P. Wu, F.D. Liu, J. Hazard. Mater. 385, 11 (2020)

    Article  Google Scholar 

  34. G.Y. Fu, J.W. Chen, Y.Q. Liang, R. Li, X.B. Yang, J.X. Jiang, Catalysts 11, 13 (2021)

    Google Scholar 

  35. J. Yang, Z.F. Li, J.X. Cui, Y.Y. Ma, Y.Y. Li, Q. Zhang, K. Song, C.L. Yang, J. Rare Earths 41, 1195 (2023)

    Article  CAS  Google Scholar 

  36. M. Yu, S. Ji, Z.F. Li, K. Song, Y.Y. Li, J. Yang, C.L. Yang, J. Chem. Sci. 134, 11 (2022)

    Article  Google Scholar 

  37. G.F. Liu, W.J. Zhang, P.F. He, D.K. Shen, C.F. Wu, C.H. Gong, Catalysts 9, 15 (2019)

    Google Scholar 

  38. Y.Q. Yang, H. Dong, Y. Wang, Y.X. Wang, N. Liu, D.J. Wang, X.D. Zhang, Inorg. Chem. Commun. 86, 74 (2017)

    Article  ADS  CAS  Google Scholar 

  39. P.Y. Wang, S. Su, J. Xiang, F. Cao, L.S. Sun, S. Hu, S.Y. Lei, Chem. Eng. J. 225, 68 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Heilongjiang Province (LH2022E117) and the Fundamental Research Funds in Heilongjiang Provincial Universities (No: 135509302).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by MY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Changlong Yang.

Ethics declarations

Confict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that the research process did not involve any human or animal experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 811 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Li, Z., Zhang, Q. et al. Fabrication of TNU-9 catalysts containing copper by organic–inorganic hybrid method for the selective catalytic reduction in NOx by NH3. Res Chem Intermed 50, 1355–1370 (2024). https://doi.org/10.1007/s11164-023-05170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05170-9

Keywords

Navigation