Skip to main content
Log in

Low cost synthesis and photocatalytic study of TiO2-graphite nanocomposite

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this paper, we have successfully fabricated TiO2-graphite nanocomposite via a simple sol–gel method. The XRD patterns indicate the presence of anatase TiO2 and the presence of graphite plane (002) in the TiO2-graphite nanocomposite. TiO2-graphite nanocomposite has been observed by HR-TEM with a size of 2–10 nm. Raman analysis clearly shows the extent of the disorder and the relationship between the sp2 and sp3 carbon atoms. The presence of the graphite is revealed in the DRS spectrum by the uniform absorption in the 440–800 nm which is the same for a null band gap energy compound. Microspheres of different sizes and a rough surface with clear graphite sheets make up composite material according to FE-SEM images. Ti, C, and O appear to be the only peaks in the EDS result, indicating that the composite obtained through this process is of high purity. The photocatalytic activity of the hybrid TiO2-graphite nanocomposite seems to be higher than of pristine TiO2 for the degradation of MO dye under UV light which degraded 98% of MO within 120 min. These results suggest that the prepared TiO2-graphite nanocomposite exhibits the characteristics of a highly effective photocatalytic activity which governs environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Research data policy and data availability

The authors confirm that the data supporting the findings of this study are available within the article. All data generated or analyzed during this study are included in this article.

References

  1. J. Garcia-Serna, R. Pinero-Hernanz, D. Duran-Martin, Catal. Today 387, 237 (2022)

    Article  CAS  Google Scholar 

  2. A. Beni, H. Jabbari, Results Eng. 15, 100467 (2022)

    Article  Google Scholar 

  3. A. Burke, C. Marques, N. Turner, G. Hermann, Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development (Wiley, 2018)

    Book  Google Scholar 

  4. S. Chaudhari, P. Gawal, P. Sane, S. Sontakke, P. Nemade, Res. Chem. Intermed. 44, 3115 (2018)

    Article  CAS  Google Scholar 

  5. K. Dedkova, J. Lang, K. Matejova, P. Peikertova, J. Holesinsky, V. Vodarek, J. Kukutschova, J. Photochem. Photobiol. B 149, 265 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. M. Fu, J. Pi, F. Dong, Q. Duan, H. Guo, Int. J. Photoenergy 2013, 158496 (2013)

    Article  Google Scholar 

  7. V. Gosavi, S. Sharma, J. Environ. Sci. Comput. Sci. Eng 3, 29 (2014)

    Google Scholar 

  8. G. Guidetti, E. Pogna, L. Lombardi, F. Tomarchio, I. Polishchuk, R. Joosten, A. Ianiro, G. Soavi, N. Sommerdijk, H. Friedrich, B. Pokroy, A. Ott, M. Goisis, F. Zerbetto, G. Falini, M. Calvaresi, A. Ferrari, G. Cerullo, M. Montalti, Nanoscale 11, 19301 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. F. Hardcastle, J. Ark. Acad. Sci. 65, 43 (2011)

    CAS  Google Scholar 

  10. Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang, Y. Li, Acc. Chem. Res. 50, 2470 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. H. Kaur, S. Kumar, N. Verma, P. Singh, J. Mater. Sci. Mater. Electron. 29, 16120 (2018)

    Article  CAS  Google Scholar 

  12. T. Krishnan, W. Mansor, Lett. Appl. NanoBioSci. 9, 1502 (2020)

    Article  Google Scholar 

  13. A. Kuldeep, R. Dhabbe, K. Garadkar, Res. Chem. Intermed. 47, 5155 (2021)

    Article  CAS  Google Scholar 

  14. E. Kusiak-Nejman, A. Wanag, L. Kowalczyk, J. Kapica-Kozar, J. Morawski, J. Adv. Oxid. Technol. 19, 227 (2016)

    CAS  Google Scholar 

  15. J. Lang, V. Matejka, Graphite/titanium dioxide composite. in Conference Proceedings Nanocon2013, Brno, Czech Republic, EU (2013)

  16. W. Lee, Y. Wu, Y. Liao, Y. Liu, Nanomaterials 10, 1710 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D. Li, J. Jia, Y. Zhang, N. Wang, X. Guo, X. Yu, J. Hazard. Mater. 315, 1 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. X. Lu, H. Chen, Desalin. Water. Treat. 56, 1681 (2014)

    Article  Google Scholar 

  19. P. Martins, C. Ferreira, A. Silva, B. Magalhaes, M. Alves, L. Pereira, P. Marques, M. Melle-Franco, S. Lanceros-Mendez, Compos. B 145, 39 (2018)

    Article  CAS  Google Scholar 

  20. S. Murakami, H. Kominami, Y. Kera, S. Ikeda, H. Noguchi, K. Uosaki, B. Ohtani, Res. Chem. Intermed. 33, 285 (2007)

    Article  CAS  Google Scholar 

  21. R. Nosrati, A. Olad, F. Maryami, Res. Chem. Intermed. 44, 6219 (2018)

    Article  CAS  Google Scholar 

  22. M. Nuno, R. Ball, C. Bowen, Photocatalytic Properties of Commercially Available TiO2 Powders for Pollution Control, Semiconductor Photocatalysis—Materials, Mechanisms and Applications (InTech, England, 2016)

    Google Scholar 

  23. Y. Oh, J. Yoo, Y. Kim, J. Yoon, H. Yoon, J. Kim, S. Park, Electrochim. Acta 116, 118 (2014)

    Article  CAS  Google Scholar 

  24. N. Padmanabhan, N. Thomas, J. Louis, D. Mathew, P. Ganguly, H. John, S. Pillai, Chemosphere 271, 129506 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. P.O.C.O. Graphite, Properties and Characteristics of Graphite for Industrial Applications (INC, New York, 2015)

    Google Scholar 

  26. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, J. Ind. Eng. Chem. 97, 111 (2021)

    Article  CAS  Google Scholar 

  27. F. Rahmawati, R. Wulandari, E. NofarisMudjijono, Sci. Eng. Compos. Mater. 0162, 1 (2015)

    Google Scholar 

  28. S. Reich, C. Thomsen, Philos. Trans. R. Soc. Lond. A 362, 2271 (2004)

    Article  CAS  Google Scholar 

  29. J. Rumky, Z. Abedin, H. Rahman, A. Hossain, IOSR J. Environ. Sci. Toxicol. Food Technol. 5, 19 (2013)

    Article  Google Scholar 

  30. M. Sharon, M. Sharon, Carbon Nanoforms and Applications (McGraw-Hill Companies, New York, 2010)

    Google Scholar 

  31. L. Stephen, Assorted dimensional reconfigurable materials, India (2020)

  32. L. Tan, W. Ong, S. Chai, A. Mohamed, Nanoscale Res. Lett. 8, 465 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  33. H. Trabelsi, M. Khadhraoui, O. Hentati, K. Ksibi, Toxicol. Environ. Chem. 95, 543 (2013)

    Article  CAS  Google Scholar 

  34. F. Tuinstra, J. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Article  CAS  Google Scholar 

  35. M. Uddin, R. Chowdhury, ASEE 387, 126831 (2007)

    Google Scholar 

  36. V. Vaiano, O. Sacco, M. Matarangolo, Catal. Today 315, 230 (2018)

    Article  CAS  Google Scholar 

  37. W. Vallejo, A. Rueda, C. Uribe, C. Grande, P. Quintana, R. Soc, Open Sci. 6, 181824 (2019)

    CAS  Google Scholar 

  38. B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Sci. Rep. 4, 3729 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  39. L. Wang, X. Fu, E. Chang, H. Wu, K. Zhang, X. Lei, R. Zhang, X. Qi, Y. Yang, Nanomaterials 2014, 678151 (2014)

    Google Scholar 

  40. Q. Xu, Q. Wang, D. Chen, Y. Zhong, Z. Wu, Y. Song, G. Wang, Y. Liu, B. Zhong, X. Guo, Green Chem. 23, 4531 (2021)

    Article  CAS  Google Scholar 

  41. H. Yang, L. Zhai, K. Li, X. Liu, B. Deng, W. Xu, Catal. Sci. Technol. 10, 1161 (2020)

    Article  CAS  Google Scholar 

  42. S. Yang, R. Jin, Z. He, Y. Qiao, S. Shi, W. Kong, Y. Wang, X. Liu, Chem. Eng. Trans. 59, 289 (2017)

    Google Scholar 

  43. H. Yoshioka, S. Higashibata, J. Phys. Conf. 150, 022105 (2009)

    Article  Google Scholar 

  44. Y. Yu, N. Zhao, C. Shi, C. He, E. Liu, J. Li, Int. J. Hydrog. Energy 37, 5762 (2012)

    Article  CAS  Google Scholar 

  45. G. Zhang, M. Wen, S. Wang, J. Chen, J. Wang, RSC Adv. 8, 567 (2018)

    Article  CAS  Google Scholar 

  46. V. Zolyomi, J. Koltai, J. Kurti, Phys. Status Solidi. B 248, 2435 (2011)

    Article  CAS  Google Scholar 

  47. H. Yang, L. Zhai, K. Li, X. Liu, B. Deng, W. Xu, Nanoscale 11, 19301 (2019)

    Article  Google Scholar 

  48. J. Jia, D. Li, J. Wan, X. Yu, J. Ind. Eng. Chem. 33, 162 (2016)

    Article  CAS  Google Scholar 

  49. A. Nasir, A. Mazare, X. Zhou, S. Qin, N. Denisov, L. Zdrazil, S. Kment, R. Zboril, T. Yasin, P. Schmuki, Chem. Photo. Chem. 6, 202100274 (2022)

    Google Scholar 

  50. A. Akerdi, S. Bahrami, E. Pajootan, J. Environ. Health Sci. Eng. 18, 51 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. R. Zhang, Y. Zhang, Q. An, Y. Li, J. Shang, B. Shen, Y. He, Adv. Mat. Res. 699, 557 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors ARK is thankful to Shivaji University, Kolhapur, for providing Golden Jubilee Research Fellowship (SU/CUDC/UGK/GJRF/14/2019-20/817 dated 07 Feb. 2020) and also thankful to SAIF-NEHU, Shillong, for providing TEM characterization.

Funding

Author ARK has received research support from Shivaji University, Kolhapur, in the form of ‘Golden Jubilee Research Fellowship’ (SU/CUDC/UGK/GJRF/14/2019-20/817 dated 07 Feb. 2020).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Dr. AK, Dr. UM, Mr. SP, Mr. SP, and Mr. AP. The first draft of the manuscript was written by Dr. AK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aviraj Kuldeep.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Informed consent and consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

This research did not involve any Human Participants or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuldeep, A., More, U., Patil, S.S. et al. Low cost synthesis and photocatalytic study of TiO2-graphite nanocomposite. Res Chem Intermed 49, 3765–3785 (2023). https://doi.org/10.1007/s11164-023-05068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05068-6

Keywords

Navigation