Skip to main content

Advertisement

Log in

Oxygen and nitrogen co-doped mesoporous carbon derived from COFs for efficient degradation of levofloxacin via peroxymonosulfate activation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Advanced oxidation processes based on peroxymonosulfate (PMS) activation are widely used for the removal of antibiotic contaminants. However, the commonly used transition metal catalysts suffer from secondary contamination due to ions leaching during the activation of PMS. Herein, the oxygen and nitrogen co-doped carbon material (Nv-NC-2) with abundant mesopores was obtained by simple high-temperature calcination using covalent organic frameworks (COFs) as precursors and NH4Cl as an activator. The Nv-NC-2/PMS system exhibited excellent levofloxacin removal efficiency under a wide pH and complex water environment with anions interference. The C=O in Nv-NC-2 was identified as the main active sites through degradation experiments and XPS. Furthermore, the electron paramagnetic resonance, quenching experiments and probe capture experiments demonstrated 1O2 and \({\text{O}}_{2}^{ - }\) were dominant active species. This study enhances the catalytic activity of COFs-derived carbon materials through a simple activation technique, which provides a novel method for surface modification of carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. A.L. Batt, I.B. Bruce, D.S. Aga, Environ. Pollut. 142, 295 (2006)

    Google Scholar 

  2. A. Bielen, A. Šimatović, J. Kosić-Vukšić et al., Water Res. 126, 78 (2017)

    Google Scholar 

  3. B. Xue, R. Zhang, Y. Wang et al., Ecotoxicol. Environ. Saf. 92, 229 (2013)

    CAS  PubMed  Google Scholar 

  4. M. Esmati, A. Allahresani, A. Naghizadeh, Res. Chem. Intermed. 47, 1447 (2021)

    Google Scholar 

  5. H. Dong, X. Yuan, W. Wang et al., J. Environ. Manag. 178, 11 (2016)

    CAS  Google Scholar 

  6. J.N. Russell, C.K. Yost, Chemosphere 263, 128177 (2021)

    CAS  PubMed  Google Scholar 

  7. S.D. Goodwin, H.A. Gallis, A.T. Chow et al., Antimicrob. Agents Chemother. 38, 799 (1994)

    Google Scholar 

  8. L. Saya, V. Malik, D. Gautam et al., Sci. Total Environ. 813, 152529 (2022)

    CAS  PubMed  Google Scholar 

  9. L. Cizmas, V.K. Sharma, C.M. Gray et al., Environ Chem Lett. 13, 381 (2015)

    Google Scholar 

  10. Q. Zhao, M. Li, K. Zhang et al., J. Environ. Manag. 262, 109795 (2020)

  11. J. Wang, S. Wang, Chem. Eng. J. 334, 1502 (2018)

    CAS  Google Scholar 

  12. Q. Yi, Z. Li, J. Li et al., Res. Chem. Intermed. 49, 655 (2023)

    Google Scholar 

  13. Y. Lee, S. Lee, M. Cui et al., Chem. Eng. J. 413, 127487 (2021)

    CAS  Google Scholar 

  14. M.S. Kim, K.-M. Lee, H.-E. Kim et al., Environ. Sci. Technol. 50, 7106 (2016)

    Google Scholar 

  15. S. Wang, J. Wang, Sci. Total Environ. 658, 1367 (2019)

    CAS  PubMed  Google Scholar 

  16. P. Ye, M. Wang, Y. Wei et al., Res. Chem. Intermed. 45, 935 (2019)

    Google Scholar 

  17. B. Bouzayani, E. Rosales, M. Pazos et al., J. Clean. Prod. 228, 222 (2019)

    CAS  Google Scholar 

  18. M. Chen, L. Zhu, S. Liu et al., J. Hazard. Mater. 371, 456 (2019)

    CAS  PubMed  Google Scholar 

  19. S. Wacławek, H.V. Lutze, K. Grübel et al., Chem. Eng. J. 330, 44 (2017)

    Google Scholar 

  20. M. Du, Q. Yi, J. Ji et al., Chin. Chem. Lett. 31, 2803 (2020)

    Google Scholar 

  21. Q. Hou, L. Qin, X. Peng et al., Res. Chem. Intermed. 48, 3753 (2022)

    Google Scholar 

  22. G. Wu, W. Kong, Y. Gao et al., Chemosphere 286, 131876 (2022)

    CAS  PubMed  Google Scholar 

  23. W. Liu, D. Sun, H. Ma et al., Res. Chem. Intermed. (2023)

  24. L. Yang, W. Chen, C. Sheng et al., Appl. Surf. Sci. 549, 149300 (2021)

    CAS  Google Scholar 

  25. Z. Sun, X. Liu, X. Dong et al., Chemosphere 263, 127965 (2021)

    CAS  PubMed  Google Scholar 

  26. F. Ghanbari, N. Jaafarzadeh, Res. Chem. Intermed. 43, 4623 (2017)

    Google Scholar 

  27. J. Yu, H. Feng, L. Tang et al., Prog. Mater. Sci. 111, 100654 (2020)

    CAS  Google Scholar 

  28. Q. Zhao, Q. Mao, Y. Zhou et al., Chemosphere 189, 224 (2017)

    CAS  PubMed  Google Scholar 

  29. X. Chen, W.-D. Oh, T.-T. Lim, Chem. Eng. J. 354, 941 (2018)

    CAS  Google Scholar 

  30. R.L. Oliveira, K. Nicinski, M. Pisarek et al., ChemCatChem 14, 20 (2022)

    Google Scholar 

  31. H. Zhang, Q. An, Y. Su et al., J. Hazard. Mater. 448, 130987 (2023)

    CAS  PubMed  Google Scholar 

  32. C. He, B. Tian, J. Zhang, Res. Chem. Intermed. 36, 349 (2010)

    Google Scholar 

  33. P. Zhan, F.-P. Hu, L. Long, J. Chen et al., Chemosphere 307, 135889 (2022)

    Google Scholar 

  34. C. Chen, B. Han, X. Zhu et al., J. Environ. Chem. Eng. 10, 345 (2022)

    Google Scholar 

  35. W. Xu, J. Pan, B. Fan et al., J. Clean. Prod. 216, 277 (2019)

    CAS  Google Scholar 

  36. H. Hu, C. Song, D. Wang et al., Chin. Chem. Lett. 33, 308 (2022)

    CAS  Google Scholar 

  37. L. Yang, Z. Xiong, J. Li et al., Chem. Eng. J. 444, 136623 (2022)

    CAS  Google Scholar 

  38. X. Li, Q. Zou, Y. Wei et al., Appl. Surf. Sci. 497, 143770 (2019)

    CAS  Google Scholar 

  39. L. Xu, B. Fu, Y. Sun et al., Chem. Eng. J. 400, 125870 (2020)

    CAS  Google Scholar 

  40. D. San Roman, D. Krishnamurthy, R. Garg et al., ACS Catal. 10, 1993 (2020)

    Google Scholar 

  41. L. Tao, Q. Wang, S. Dou et al., Chem Commun. 52, 2764 (2016)

    Google Scholar 

  42. L. Hu, G. Zhang, M. Liu et al., Chem. Eng. J. 338, 300 (2018)

    CAS  Google Scholar 

  43. S. Yang, P. Wang, X. Yang et al., J. Hazard. Mater. 179, 552 (2010)

    Google Scholar 

  44. B. Bekdeşer, M. Özyürek, K. Güçlü et al., Anal. Chem. 83, 5652 (2011)

    Google Scholar 

  45. J. Park, D. Feng, S. Yuan et al., Angew. Chem. Int. Ed. 54, 14753 (2015)

    Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (22006038, 22076046), and Fundamental Research Funds for the Central Universities (JKB01221619).

Author information

Authors and Affiliations

Authors

Contributions

XZ and MC wrote the main manuscript text. DL, JL and JZ helped perform the analysis with constructive discussions. YL and LZ contributed significantly to analysis and manuscript preparation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Liang Zhou.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2035 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Cao, M., Liu, D. et al. Oxygen and nitrogen co-doped mesoporous carbon derived from COFs for efficient degradation of levofloxacin via peroxymonosulfate activation. Res Chem Intermed 49, 2793–2806 (2023). https://doi.org/10.1007/s11164-023-05023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05023-5

Keywords

Navigation