Skip to main content

Advertisement

Log in

Polymerization parameters diapason as a tool for thin films morphological and optoelectrical properties optimization of Poly (pyrrole-co-2-nitrocinnamaldehyde) conjugated semiconductor

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Polymer materials have been widely studied due to their large potential of application in technological fields because of their excellent and diverse properties. Morphological and rearrangement state of synthesized polymers has significant effect on their physicochemical properties and influence the performance of these materials in thin films structures. It is of both fundamental and practical importance to understand the effect of synthesis parameters and changing such parameters on optical, electronic, electrical and morphological properties of polymer surfaces and thin films for the development of new functional polymers and their applications. In this article, the fundamentals of optical, charge career and morphological mechanics are presented for quantifying the use of synthesis parameters for thin films physicochemical properties tuning. Pyrrole with 2-nitrocinnamaldehyde based copolymers have been synthetized by varying synthesis parameters such solvent, reaction time and temperature which proved a relevant effect on the morphological and optoelectronic properties of the relative final deposited thin films. The study proved that the best opto-electric properties are obtained by using either acetone with a long reaction time or chloroform with a short reaction time and room conditions for the pressure and reaction temperature. The optimized PPNC thin films showed a narrow absorbance covering the entire visible optical spectrum and a considerable conductivity of 10.3 104 S/cm ensured by a charge mobility of 677.1 cm2/Vs. The electrochemical study proved that the electronic energy level could be optimized from the synthesis parameters as well as the gap varying around 3.0 eV depending on the optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. S. Tokonami, Y. Nakadoi, H. Nakata, S. Takami, T. Kadoma, H. Shiigi, T. Nagaoka, Res. Chem. Intermed. 40, 2327 (2014)

    Article  CAS  Google Scholar 

  2. N. Ohta, T. Tanaka, I. Yamazaki, Res. Chem. Intermed. 27, 61 (2001)

    Article  CAS  Google Scholar 

  3. P. Müller-Buschbaum, M. Stamm, Colloid Polym. Sci. 279, 376 (2001)

    Article  Google Scholar 

  4. M.G. Faraj, P. Taboada, Inorg. Organomet. Polym. 27, 1405 (2017)

    Article  CAS  Google Scholar 

  5. F. Mohanty, S.K. Swain, Polym. Compos. 40, 1199 (2019)

    Article  Google Scholar 

  6. S. Ramesh, O. Uma, R. Shanti, L.J. Yi, K. Ramesh, Measurement 48, 263 (2014)

    Article  Google Scholar 

  7. Y. Sun, B. Yang, G. Guo, L. Yaqing, Z. Guizhe, Inorg. Organomet. Polym. 21, 395 (2011)

    Article  CAS  Google Scholar 

  8. G. Bidan, S. Guillerez, V. Sorokin, Adv. Mater. 8, 157 (1996)

    Article  CAS  Google Scholar 

  9. L. Pu, Acta. Polym. 48, 116 (1997)

    Article  CAS  Google Scholar 

  10. A. Patil, S. Shinde, G. Rashinkar, Res. Chem. Intermed. 46, 63 (2020)

    Article  CAS  Google Scholar 

  11. J. Han, Adv. Opt. Mater. 6, 1800538 (2018)

    Article  Google Scholar 

  12. O. Folorunso, Y. Hamam, R. Sadiku, S.S. Ray, G.J. Adekoya, FlatChem 26, 100211 (2021)

    Article  CAS  Google Scholar 

  13. B. El-Hachemi, S. Miloud, M. Sabah, S. Touahri, Z. Ouili, B. Boudine, M.T. Soltani, O. Halimi, Inorg. Organomet. Polym. 31, 3637 (2021)

    Article  CAS  Google Scholar 

  14. G. Sarojini, S. Venkateshbabu, M. Rajasimman, Chemosphere 278, 130400 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. A.L. Pang, A. Arsad, M. Ahmadipour, Polym. Adv. Technol. 32, 1428 (2021)

    Article  CAS  Google Scholar 

  16. W. Wang, H. Xu, W. Zhao, J. Zhao, M. Jiang, S. Liu, W. Huang, Q. Zhao, Chem. Eng. 428, 131089 (2022)

    Article  CAS  Google Scholar 

  17. F. Ji, X. Guo, A. Liu, P. Xu, Y. Tan, R. Wang, L. Hao, Carbo. Polym. 270, 118362 (2021)

    Article  CAS  Google Scholar 

  18. E.G.C. Ergun, B.B. Carbas, Mater. Today Commun. 302, 103888 (2022)

    Article  Google Scholar 

  19. E. Martínez-Cartagena, J. Bernal-Martínez, C.A. Aranda-Sánchez, A. Banda-Villanuev, O.L. Gonzalez-Zapata, A. Ledezma-Pérez, A. Aguilar-Elguezabal, J. Romero-García, Mater. Sci. Chem. Eng. 9, 19 (2021)

    Google Scholar 

  20. R. Vaquero-Bermejo, E. Blázquez-Blázquez, M. Hoyos, J.M. Gómez-Elvira, Mater. Today Commun. 31, 103469 (2022)

    Article  CAS  Google Scholar 

  21. C.H. Choi, M. Kertesz, J. Phys. Chem. A 101, 3823 (1997)

    Article  CAS  Google Scholar 

  22. D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, 1991)

    Google Scholar 

  23. Y. Gao, B. Cole, W.E. Tenhaeff, Macromol. Mater. Eng. 2, 1700425 (2017)

    Google Scholar 

  24. A.L. Mercado, C.E. Allmond, J.G. Hoekstra, J.M. Fitz-Gerald, Appl. Phys. A 81, 591 (2005)

    Article  CAS  Google Scholar 

  25. I. Petrik, E. Frolova, A. Turchin, N. Smirnova, A. Eremenko, Res. Chem. Intermed. 45, 4113 (2019)

    Article  CAS  Google Scholar 

  26. M. Koenig, V. Trouillet, A. Welle, K. Hinrichs, J. Lahann, Macromol. Chem. Phys. 19, 221 (2020)

    Google Scholar 

  27. S. Al-Bati, H. Aljboor, K. Ibtehaj, P.C. Ooi, B.A. Al-Asbahi, A.A.A. Ahmed, M.H.H. Jumali, ECS J. Solid State Sci. Technol. 11(5), 056002 (2022)

    Article  Google Scholar 

  28. A. Remil, Y. Mouchaal, A. B. Reguig, A. Lakhdar Toumi, H. Gherrass, A. Hachemaoui , A. Yahiaoui, A. Khelil, Surf. Rev. Let. 25, 1850116 (2017)

  29. Y. Mouchaal, H. Gherrass, A.B. Reguig, A. Hachemaoui, A. Yahiaoui, M. Makha, A. Khelil, J.C. Bernede, Eur. Phys. J. Appl. Phys. 69, 20203 (2015)

    Article  Google Scholar 

  30. C.J. Mathai, S. Saravanan, M.R. Anantharaman, S. Venkitachalam, S. Jayalekshmi, J. Phys. D Appl. Phys. 35(17), 2206 (2002)

    Article  CAS  Google Scholar 

  31. A. Nicosia, F. Vento, G.M. Di Mari, L. D’Urso, P.G. Mineo, Nanomaterials 11, 400 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. K.H. Tan, L. Samylingam, N. Aslfattahi, R. Saidur, K. Kadirgama, Opt. Laser. Tech. 136, 106772 (2021)

    Article  CAS  Google Scholar 

  33. G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A.J. Robinson, G. Hadziioannou, A. Pakdel, Mater. Today Phys. 18, 100402 (2021)

    Article  CAS  Google Scholar 

  34. W. Li, S. Zeiske, O.J. Sandberg, D.B. Riley, P. Meredith, A. Armin, Energy Environ. Sci. 14, 6484 (2021)

    Article  CAS  Google Scholar 

  35. M.Y. Mehboob, M. Adnan, R. Hussain, F. Arshad, I. Zobia, Opt. Quant. Electron. 53, 517 (2021)

    Article  CAS  Google Scholar 

  36. A. Kaewprajak, P. Kumnorkaew, K. Lohawet, B. Duong, T. Chonsut, N. Kayunkid, N. Saranrom, V. Promarak, Surf. Interf. 23, 100969 (2021)

    Article  CAS  Google Scholar 

  37. F. Zhang, E. Mohammadi, X. Luo, J. Strzalka, J. Mei, Y. Diao, Langmuir 34, 1109 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. D.M. Leeuw, M.M.J. Simenon, A.R. Brown, R.E.F. Einerhand, Synth. Met. 87, 53 (1997)

    Article  Google Scholar 

  39. C.J. Yang, S.A. Jenekhe, Macromolecules 28, 1180 (1995)

    Article  CAS  Google Scholar 

  40. A.K. Agrawal, S.A. Jenekhe, Chem. Mater 8, 579 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge support by the funding granted by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as well as the General Direction of Scientific Research and Scientific Development (DGRSDT). Author’s acknowledgements are presented to LCOMM team, University Mustapha Stambouli of Mascara for support on electrochemical analysis. Dr. Y. MOUCHAAL acknowledges the financial support from LPCMME lab team, Oran1 Ahmed Benbella University.

Funding

This work was supported by The Algerian Ministry of Higher Education and Scientific Research (MESRS) and General Direction of Scientific Research and Scientific Development (DGRSDT).

Author information

Authors and Affiliations

Authors

Contributions

YM and AA performed experiments and calculations. AH, ALAT, and AT contributed for DATA plot and analysis investigation. AA, YM, and AY wrote and performed the main manuscript. AK, YM, and AY supervised the work. All authors read and reviewed the manuscript.

Corresponding author

Correspondence to Younes Mouchaal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anab, A., Mouchaal, Y., Yahiaoui, A. et al. Polymerization parameters diapason as a tool for thin films morphological and optoelectrical properties optimization of Poly (pyrrole-co-2-nitrocinnamaldehyde) conjugated semiconductor. Res Chem Intermed 49, 2141–2153 (2023). https://doi.org/10.1007/s11164-023-04970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04970-3

Keywords

Navigation