Skip to main content

Advertisement

Log in

Spectroscopic, quantum chemical, ADMET and molecular docking studies of echinatin: a prospective tuberculosis drug

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) is a potentially fatal infectious illness affecting mostly the lungs. Tuberculosis bacteria are communicated from person to person via minute droplets discharged into the air by coughs and sneezes. Hence, it is very necessary to develop potential drug against Tuberculosis. The main objective of the work is to study the anti-Tuberculosis activity of Echinatin. Utilizing the Density Functional Theory (DFT) method, the Echinatin (ECN) molecule was optimized to its minimum energy level. The geometrical values in gas phase have been compared with the active site values; the active site values are slightly different from the gas phase values because the ECN molecule enters into the active site of the molecule, fits very well and gets twisted. The vibrational (FT-IR and FT-Raman) and electronic properties (UV–Vis) were computed for ECN and the findings were found to be quite close to experimental data. The MEP map clearly shows the possible interaction of ECN in the active site. The global reactivity descriptors, local reactivity descriptors, and natural bond orbital studies were used to analyze the reactivity, site selectivity, and stability of the ECN molecule. The ECN molecule obeys Lipinski’s rule of five, and the bioactivity score of ECN is predicted. The molecular docking study reveals the best fit orientation of the ECN molecule. In the docking analysis, the molecule ECN is docked with three anti-tuberculosis proteins, such as DNA gyrase receptor, DprE1 enzyme and PknB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Zhai, F. Wu, Y. Zhang, Y. Fu, Z. Liu, Int. J. Mol. Sci. 20, 340 (2019)

    Article  Google Scholar 

  2. M. Abdullahi, S.E. Adeniji, Chem. Africa 3, 989 (2020)

    Article  CAS  Google Scholar 

  3. J. Zhou, Y. Jin, R. Ma, H. Song, Q. Chen, Y. Chai, Y. Liang, Y. Zhou, J. Fang, Evid. Based Complement Altern. Med. 2020, 1 (2020)

    CAS  Google Scholar 

  4. E. Arnett, A.M. Weaver, K.C. Woodyard, M.J. Montoya, M. Li, K.V. Hoang, A. Hayhurst, A.K. Azad, L.S. Schlesinger, PLOS Pathog. 14, e1007100 (2018)

    Article  Google Scholar 

  5. X. Liu, X.-J. Wang, J. Genet. Genomic. 47, 119 (2020)

    Article  Google Scholar 

  6. V. Choudhary, A. Bhatt, D. Dash, N. Sharma, J. Comput. Chem. 40, 2354 (2019)

    Article  CAS  Google Scholar 

  7. S. Kumar, V. Saini, I.K. Maurya, J. Sindhu, M. Kumari, R. Kataria, V. Kumar, PLoS ONE 13, e0196016 (2018)

    Article  Google Scholar 

  8. M. Kadela-Tomanek, M. Jastrzębska, K. Marciniec, E. Bębenek, E. Chrobak, S. Boryczka, Curr. Comput.-Aided Drug Des. 11, 76 (2021)

    CAS  Google Scholar 

  9. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.A. Cheeseman, G. Calmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, I.A.F. Hratchian, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B01 (Gaussian Inc., Wallingford, CT, 2010)

    Google Scholar 

  10. E. Frisch, H.P. Hratchian, R.D. Dennington II et al., Gaussview, Version 5.0.8, 235 Gaussian Inc, Wallingford, (2009).

  11. M.H. Jamróz, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114, 220 (2013)

    Article  Google Scholar 

  12. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem. 30, 2785 (2009)

    Article  CAS  Google Scholar 

  13. Warren Lyford DeLano, The PyMOL Molecular graphics system version 1.8 schrodinger, LLC

  14. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, J. Comput. Chem. 25, 1605 (2004)

    Article  CAS  Google Scholar 

  15. R.A. Laskowski, M.B. Swindells, J. Chem. Inf. Model. 51, 2778 (2011)

    Article  CAS  Google Scholar 

  16. Editor: Russell D. Johnson III., editor , NIST computational chemistry comparison and benchmark database, NIST standard reference database number 101 (n.d.)

  17. B. Sathya, S. Karthi, K. Ajaijawahar, M. Prasath, Res. Chem. Intermed. 46, 4475 (2020)

    Article  CAS  Google Scholar 

  18. S. Bangaru, P. Manivannan, S. Muthu, Chem. Data Collect. 30, 100580 (2020)

    Article  CAS  Google Scholar 

  19. M. Govindammal, M. Prasath, S. Kamaraj, B. Sathya, Bio catalysis and agricultural. Biotechnology 18, 101086 (2019)

    Google Scholar 

  20. S. Bangaru, P. Manivannan, Res. Chem. Intermed. 47, 2775 (2021)

    Article  CAS  Google Scholar 

  21. A. Choperena, P. Painter, Vib. Spectrosc. 51, 110 (2009)

    Article  CAS  Google Scholar 

  22. E.A. Zhurova, V.V. Zhurov, P. Kumaradhas, S. Cenedese, A.A. Pinkerton, J. Phys. Chem. B. 120, 8882 (2016)

    Article  CAS  Google Scholar 

  23. E.A. Zhurova, V.V. Zhurov, D. Chopra, A.I. Stash, A.A. Pinkerton, J. Am. Chem. Soc. 131, 17260 (2009)

    Article  CAS  Google Scholar 

  24. P. Politzer, J.S. Murray, Z. Peralta-Inga, Int. J. Quantum Chem. 85, 676 (2001)

    Article  CAS  Google Scholar 

  25. P. Politzer, J.S. Murray, Theor. Chem. Acc. Theory Comput. Model. 108(3), 134 (2002)

    Article  CAS  Google Scholar 

  26. R. G. Parr, L. v. Szentpály, and S. Liu, (1999) J. Am. Chem. Soc. 121, 1922

  27. T.K. Ghanty, S.K. Ghosh, J. Phys. Chem. 100, 12295 (1996)

    Article  CAS  Google Scholar 

  28. M. Prasath, M. Govindammal, Heliyon 6(8), e04641 (2020)

    Article  Google Scholar 

  29. C.R.L.F. Weinhold, Valency and bonding: a natural bond orbital donor acceptor perspective (Cambridge University Press, Cambridge, Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  30. W. Yang, R.G. Parr, Proc. Natl. Acad. Sci. 82, 6723 (1985)

    Article  CAS  Google Scholar 

  31. J. Padmanabhan, R. Parthasarathi, M. Elango, V. Subramanian, B.S. Krishnamoorthy, S. Gutierrez-Oliva, A. Toro-Labbé, D.R. Roy, P.K. Chattaraj, J. Phys. Chem. A. 111, 9130 (2007)

    Article  CAS  Google Scholar 

  32. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. 46, 3 (2001)

    Article  CAS  Google Scholar 

  33. E.A. Alodeani, M. Arshad, M.A. Izhari, Asian Pac. J. Trop. Biomed. 5, 676 (2015)

    Article  CAS  Google Scholar 

  34. C. Kramer, A. Ting, H. Zheng, J. Hert, T. Schindler, M. Stahl, G. Robb, J.J. Crawford, J. Blaney, S. Montague, A.G. Leach, A.G. Dossetter, E.J. Griffen, J. Med. Chem. 61, 3277 (2018)

    Article  CAS  Google Scholar 

  35. A. Lagunin, A. Stepanchikova, D. Filimonov, V. Poroikov, Bioinformatics 16, 747 (2000)

    Article  CAS  Google Scholar 

  36. T.A. Young, B. Delagoutte, J.A. Endrizzi, A.M. Falick, T. Alber, Nat. Struct. Mol. Biol. 10, 168 (2003)

    Article  CAS  Google Scholar 

  37. S.M. Batt, T. Jabeen, V. Bhowruth, L. Quill, P.A. Lund, L. Eggeling, L.J. Alderwick, K. Futterer, G.S. Besra, Proc. Natl. Acad. Sci. 109, 11354 (2012)

    Article  CAS  Google Scholar 

  38. K. Mdluli, Z. Ma, Infect disord drug. Targets 7, 159 (2007)

    CAS  Google Scholar 

  39. Peter W. Rose, Andreas Prlic, Ali Altunkaya, Chunxiao Bi, Anthony R. Bradley, Cole H. Christie, Luigi Di Costanzo, Jose M. Duarte, Shuchismita Dutta, Zukang Feng, Rachel Kramer Green, David S. Goodsell, Brian Hudson, Tara Kalro, Robert Lowe, Ezra Peisach, Christopher Randle, Alexander S. Rose, Chenghua Shao, Yi-Ping Tao, Yana Valasatava, Maria Voigt, John D. Westbrook, Jesse Woo, Huangwang Yang, Jasmine Y. Young, Christine Zardecki, Helen M. Berman, Stephen K. Burley, Nucleic Acids Res, 1 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prasath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, N., Sathya, B. & Prasath, M. Spectroscopic, quantum chemical, ADMET and molecular docking studies of echinatin: a prospective tuberculosis drug. Res Chem Intermed 48, 2363–2390 (2022). https://doi.org/10.1007/s11164-022-04716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04716-7

Keywords

Navigation