Skip to main content

Advertisement

Log in

Effect of various aminosilanes functionalized inside nanoporous silica on CO2 adsorption performance

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Three different aminosilanes ((3-aminopropyl)trimethoxysilane (1NS), N-[3-(trimethoxysilyl) propyl]ethylenediamine (2NS), N1-(3-trimethoxysilylpropyl)diethylenetriamine (3NS)) were grafted covalently inside nanoporous silica (NPS-1) with a large surface area to prepare CO2 adsorbents. The prepared CO2 sorbents were evaluated for their CO2 sorption capacity, kinetic behavior, temperature programmed desorption (TPD) and textural properties. Grafting efficiency of 1NS was better due to the smaller molecular size compared to 2NS and 3NS, which are difficult to react with the hydroxyl group of the silica surface due to steric hindrance. The highest adsorption capacity of 7.0 wt% was observed for the 2NS/NPS-1 adsorbent, followed by 5.2 wt% for 1NS/NPS-1, then 5.0 wt% for 3NS/NPS-1. The adsorption capacity of 2NS/NPS-1 was highest at 30 °C, and it gradually decreased as the adsorption temperature increased. TPD analysis showed that the reaction of primary amine of 2NS with CO2 inside the nanoporous silica could form less thermally stable carbamic acid and carbamate compared to 1NS and 3NS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.C. Chow, J.G. Watson, A. Herzog, S.M. Benson, G.M. Hidy, W.D. Gunter, S.J. Penkala, C.M. White, J. Air Waste Manag. Assoc. 53, 645 (2003)

    Article  Google Scholar 

  2. M.L. Gray, Y. Soong, K.J. Champagne, H. Pennline, J.P. Baltrus, R.W. Stevens Jr., R. Khatri, S.S.C. Chuang, T. Filburn, Fuel Process. Technol. 86, 1449 (2005)

    Article  CAS  Google Scholar 

  3. H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, J. Environ. Sci. 20, 14 (2008)

    Article  CAS  Google Scholar 

  4. J.C. Hicks, J.H. Drese, D.J. Fauth, M.L. Gray, G. Qi, C.W. Jones, J. Am. Chem. Soc. 130, 2902 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. R. Veneman, Z.S. Li, J.A. Hogendoorn, S.R.A. Kersten, D.W.F. Brilman, Chem. Eng. J. 207, 18 (2012)

    Article  CAS  Google Scholar 

  6. Y.C. Park, S.H. Jo, S.Y. Lee, J.H. Moon, C.K. Ryu, J.B. Lee, C.K. Yi, Korean J. Chem. Eng. 33, 73 (2016)

    Article  CAS  Google Scholar 

  7. G.P. Knowles, J.V. Graham, S.W. Delaney, A.L. Chaffee, Fuel Process. Technol. 86, 1435 (2005)

    Article  CAS  Google Scholar 

  8. D. H. Kim, J. M. Celedonio, Y. S. Ko, Top. Catal. 60, 706 (2017)

    Article  CAS  Google Scholar 

  9. J.H. Park, J.M. Celedonio, H. Seo, Y.K. Park, Y.S. Ko, Catal. Today 265, 68 (2016)

    Article  CAS  Google Scholar 

  10. J.M. Celedonio, J.H. Park, Y.S. Ko, Res. Chem. Intermed. 42, 141 (2016)

    Article  CAS  Google Scholar 

  11. P.J.E. Harlick, A. Sayari, Ind. Eng. Chem. Res. 46, 446 (2007)

    Article  CAS  Google Scholar 

  12. R.S. Franchi, P.J.E. Harlick, A. Sayari, Ind. Eng. Chem. Res. 44, 8007 (2005)

    Article  CAS  Google Scholar 

  13. Y. Belmabkhout, A. Sayari, Adsorpt. J. Int. Adsorpt. Soc. 15, 318 (2009)

    Article  CAS  Google Scholar 

  14. A. Danon, P.C. Stair, E. Weitz, J. Phys. Chem. C 115, 11540 (2011)

    Article  CAS  Google Scholar 

  15. E.D. Canck, L. Ascoop, A. Sayari, P.V.D. Voort, Phys. Chem. Chem. Phys. 15, 9792 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. I. Kim, H.F. Svendsen, Ind. Eng. Chem. Res. 46, 5803 (2007)

    Article  CAS  Google Scholar 

  17. N. McCann, M. Maeder, M. Attalla, Ind. Eng. Chem. Res. 47, 2002 (2008)

    Article  CAS  Google Scholar 

  18. M.B. Yue, L.B. Sun, Y. Cao, Z.J. Wang, Y. Wang, Q. Yu, J.H. Zhu, Microporous Mesoporous Mater. 114, 74 (2008)

    Article  CAS  Google Scholar 

  19. M.W. Hahn, J. Jelic, E. Berger, K. Reuter, A. Jentys, J.A. Lercher, J. Phys. Chem. B 120, 1988 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Science, ICT, and Future Planning) (No. 2014049259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Soo Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Ko, Y.S. Effect of various aminosilanes functionalized inside nanoporous silica on CO2 adsorption performance. Res Chem Intermed 44, 3661–3672 (2018). https://doi.org/10.1007/s11164-018-3373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3373-5

Keywords

Navigation