Skip to main content

Advertisement

Log in

The controllable synthesis of porous MoN nanorods/carbon for highly efficient electrochemical hydrogen evolution

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

MoN is a promising material for electrochemical hydrogen evolution due to its cheap price and excellent catalytic activity sites, but the low conductivity prevents further improvement of its catalytic performance. In this work, porous MoN nanorods have been fabricated with an efficient and facile precursor method. XRD, Raman and TEM showed MoN nanorods with diameters of about 100 nm. With a simple mechanical mixing method, MoN/conductive carbon black (CB) composites with different weight ratios have been fabricated. The composite possessed two merits, that is, the more catalytic active site in MoN nanorods due to the porous structure, and fast electron transfer due to the CB. So, it has been used as a hydrogen evolution material. With the proper weight ratio, the composite exhibited brilliant catalytic activity and durability in acidic media. It possesses an overpotential of 162 mV to approach 10 mA cm−2, a small Tefel slope of 54 mV dec−1 and maintains the good electrocatalytic activity for at least 10 h. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that the electrocatalyst possessed a high catalytic active area and fast electron transfer. These results can compare with many other recently reported nitride catalysts. Our work possibly provides a new avenue for the preparation of a MoN-based catalyst for highly efficient electrochemical hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 17881 (2013)

    Article  CAS  Google Scholar 

  2. J. Xie, Z. Hao, L. Shuang, R. Wang, S. Xu, Z. Min, J. Zhou, X.W. Lou, X. Yi, Adv. Mater. 25, 5807 (2013)

    Article  CAS  Google Scholar 

  3. C.G. Morales-Guio, S. Lucas-Alexandre, H. Xile, Chem. Soc. Rev. 43, 6555 (2014)

    Article  CAS  Google Scholar 

  4. H. Gu, Y. Huang, L. Zuo, W. Fan, T. Liu, Electrochim. Acta 219, 604 (2016)

    Article  CAS  Google Scholar 

  5. T. Hu, K. Bian, G. Tai, T. Zeng, X. Wang, X. Huang, K. Xiong, K. Zhu, J. Phys. Chem. C 120, 25843 (2016)

    Article  CAS  Google Scholar 

  6. J. Yang, K. Wang, J. Zhu, C. Zhang, T. Liu, ACS Appl. Mater. Interfaces. 8, 31702 (2016)

    Article  CAS  Google Scholar 

  7. J.H. Kwon, H.J. Ahn, M.S. Jeon, K.W. Kim, I.S. Ahn, J.H. Ahn, G. Wang, H.S. Ryu, Res. Chem. Intermed. 36, 749 (2010)

    Article  CAS  Google Scholar 

  8. W.F. Chen, K. Sasaki, C. Ma, A.I. Frenkel, N. Marinkovic, J.T. Muckerman, Y. Zhu, R.R. Adzic, Angew. Chem. Int. Ed. 51, 6235 (2012)

    Article  Google Scholar 

  9. C. Bingfei, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, J. Am. Chem. Soc. 135, 19186 (2013)

    Article  Google Scholar 

  10. C. Wei-Fu, J.T. Muckerman, F. Etsuko, Chem. Commun. 49, 8896 (2013)

    Article  Google Scholar 

  11. L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, J. Mater. Chem. A 3, 8361 (2015)

    Article  CAS  Google Scholar 

  12. G. Lian, X. Zhang, L. Zhu, M. Tan, D. Cui, Q. Wang, Res. Chem. Intermed. 37, 369 (2011)

    Article  CAS  Google Scholar 

  13. Q.S. Chen, Y.N. Jiang, J.Y. Yan, W. Li, V. Prasad, Res. Chem. Intermed. 37, 467 (2011)

    Article  CAS  Google Scholar 

  14. V. Heron, X. Hu, Angew. Chem. 124, 12875 (2012)

    Article  Google Scholar 

  15. Y. Ya, X. Baoyu, Q. Xiaoying, W. Haibo, X. Rong, W. Jing-Yuan, Z. Hua, W. Xin, Chem. Commun. 49, 4884 (2013)

    Article  Google Scholar 

  16. P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.Y. Wang, K.H. Lim, X. Wang, Energy Environ. Sci. 7, 2624 (2014)

    Article  CAS  Google Scholar 

  17. K. Zhang, C. Li, Y. Zhao, X. Yu, Y. Chen, Phys. Chem. Chem. Phys. 17, 11609 (2015)

    Article  Google Scholar 

  18. E.J. Popczun, J.R. Mckone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, J. Am. Chem. Soc. 135, 9267 (2013)

    Article  CAS  Google Scholar 

  19. E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Angew. Chem. 53, 5427 (2014)

    Article  CAS  Google Scholar 

  20. X. You, W. Rui, Z. Jingfang, S. Yanmei, Z. Bin, Chem. Commun. 49, 6656 (2013)

    Article  Google Scholar 

  21. J. Jiang, M. Gao, W. Sheng, Y. Yan, Angew. Chem. 128, 15240 (2016)

    Article  Google Scholar 

  22. D. Choi, P.N. Kumta, Electrochem. Solid State Lett. 89, 444 (2005)

    Google Scholar 

  23. D. Choi, G.E. Blomgren, P.N. Kumta, Adv. Mater. 18, 1178 (2006)

    Article  CAS  Google Scholar 

  24. D. Choi, Diss. Abstr. Int. 66, 1662 (2005)

    Google Scholar 

  25. V. Chakrapani, J. Thangala, M.K. Sunkara, Int. J. Hydrog. Energy 34, 9050 (2009)

    Article  CAS  Google Scholar 

  26. X. Chen, G. Liu, W. Zheng, W. Feng, W. Cao, W. Hu, P.A. Hu, Adv. Funct. Mater. 26, 8537 (2016)

    Article  CAS  Google Scholar 

  27. J. Shi, Z. Pu, L. Qian, A.M. Asiri, J. Hu, X. Sun, Electrochim. Acta 154, 345 (2015)

    Article  CAS  Google Scholar 

  28. J. Xie, S. Li, X. Zhang, J. Zhang, R. Wang, H. Zhang, B.C. Pan, Y. Xie, Chem. Sci. 135, 17881 (2014)

    Article  Google Scholar 

  29. Y. Zhang, F. Lu, Z. Wang, L. Zhang, J. Phys. Chem. C 111, 4519 (2007)

    Article  CAS  Google Scholar 

  30. Y.J. Chen, G. Xiao, T.S. Wang, F. Zhang, Y. Ma, P. Gao, C.L. Zhu, E. Zhang, Z. Xu, Q.H. Li, Sens. Actuators B Chem. 155, 270 (2011)

    Article  CAS  Google Scholar 

  31. A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, Sens. Actuators B Chem. 171, 25 (2012)

    Article  Google Scholar 

  32. Y. Chen, F. Meng, C. Ma, Z. Yang, C. Zhu, Q. Ouyang, P. Gao, J. Li, C. Sun, J. Mater. Chem. 22, 12900 (2012)

    Article  CAS  Google Scholar 

  33. C. Nan-Rong, L. Chunmeng, G. Jingjiao, L.L. James, A.J. Epstein, Nat. Nanotechnol. 2, 354 (2007)

    Article  Google Scholar 

  34. C. Nan-Rong, A.J. Epstein, Adv. Mater. 17, 1679 (2005)

    Article  Google Scholar 

  35. P.M. Beadle, Y.F. Nicolau, E. Banka, P. Rannou, D. Djurado, Synth. Met. 95, 29 (1998)

    Article  CAS  Google Scholar 

  36. W. Zhao, L. Ma, K. Lu, J. Polym. Res. 14, 1 (2007)

    Article  CAS  Google Scholar 

  37. J. Xu, W. Kai, S.Z. Zu, B.H. Han, Z. Wei, ACS Nano 4, 5019 (2010)

    Article  CAS  Google Scholar 

  38. J. Ping, L. Qian, Y. Liang, J. Tian, A.M. Asiri, X. Sun, Angew. Chem. 53, 13069 (2014)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this research by the Excellent Youth of Common Universities of Heilongjiang Province (1252G045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xie, Y., Zhang, Y. et al. The controllable synthesis of porous MoN nanorods/carbon for highly efficient electrochemical hydrogen evolution. Res Chem Intermed 43, 5557–5568 (2017). https://doi.org/10.1007/s11164-017-2947-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-2947-y

Keywords

Navigation