Skip to main content
Log in

Synthesis of novel 1,2,3-triazole-containing pyridine–pyrazole amide derivatives based on one-pot click reaction and their evaluation for potent nematicidal activity against Meloidogyne incognita

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In order to find a novel, leading nematicide compound, a series of pyridine–pyrazole amide derivatives containing 1,2,3-triazoles were synthesized via click chemistry in a one-pot reaction. Their structures were characterized by proton nuclear magnetic resonance ( 1H NMR), 13C NMR, 19F NMR and high-resolution mass spectrometry (HRMS). Preliminary bioassays showed that most of the synthesized compounds exhibited good inhibitory activity in vivo against Meloidogyne incognita at 25 mg L−1. Among the tested compounds, 3a, 3e, 3f, 3g, 3j, 3m, 3q, 3s, 3t, 3v and 3w exhibited 100 % inhibition rates. Moreover, 3k displayed a 92.4 % inhibitory activity at 10 mg L−1. This investigation suggested that this pyridine–pyrazole amide containing a 1,2,3-triazole scaffold could be further optimized to explore novel, high-bioactivity nematicidal leads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. P. Castagnone-Sereno, E.G. Danchin, L. Perfus-Barbeoch, P. Abad, Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. Annu. Rev. Phytopathol. 51, 203–220 (2013)

    Article  CAS  Google Scholar 

  2. H.J. Atkinson, C.J. Lilley, P.E. Urwin, Strategies for transgenic nematode control in developed and developing world crops. Curr. Opin. Biotechnol. 23, 251–256 (2012)

    Article  CAS  Google Scholar 

  3. M.S. Khalil, Bright future with nematicidal phytochemicals. Biol. Med. 6, 104 (2014)

    Article  Google Scholar 

  4. J.B. Ristaino, W. Thomas, Agriculture, methyl bromide, and the ozone hole: can we fill the gaps? Plant Dis. 81, 964–977 (1997)

    Article  Google Scholar 

  5. J.A. Johnson, S.S. Walse, J.S. Gerik, Status of alternatives for methyl bromide in the United States. Outlooks Pest Manag. 23, 53–58 (2012)

    Article  Google Scholar 

  6. K. Qiao, Z. Wang, M. Wei, H. Wang, Y. Wang, K. Wang, Evaluation of chemical alternatives to methyl bromide in tomato crops in China. Crop Prot. 67, 223–227 (2015)

    Article  CAS  Google Scholar 

  7. C. Opperman, S. Chang, Plant-parasitic nematode acetylcholinesterase inhibition by carbamate and organophosphate nematicides. J. Nematol. 22, 481 (1990)

    CAS  Google Scholar 

  8. Y. Oka, S. Shuker, N. Tkachi, Systemic nematicidal activity of fluensulfone against the root-knot nematode Meloidogyne incognita on pepper. Pest Manag. Sci. 68, 268–275 (2012)

    Article  CAS  Google Scholar 

  9. J. Kearn, E. Ludlow, J. Dillon, V. O’Connor, L. Holden-Dye, Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones. Pestic. Biochem. Phys. 109, 44–57 (2014)

    Article  CAS  Google Scholar 

  10. Y. Oka, Nematicidal activity of fluensulfone against some migratory nematodes under laboratory conditions. Pest. Manag. Sci. 70, 1850–1858 (2014)

    Article  CAS  Google Scholar 

  11. U. Slomczynska, M.S. South, G. Bunkers, D. Edgecomb, D. Wyse-Pester, S. Selness, Y. Ding, J. Christiansen, K. Ediger, W. Miller, in Tioxazafen: A New Broad-Spectrum Seed Treatment Nematicide. Abstracts of Papers of the American Chemical Society, USA (2014)

  12. J.R. Rich, R.A. Dunn, J.W. Noling, in Nematicides: Past and Present Uses. ed. by Z. X. Chen, S. Y. Chen, D. W. Dickson. Nematology, vol. 2 (CABI, Wallingford, 2004), pp 1179–1200

  13. S. Qin, J. Can, W. Liu, J.O. Becker, Degradation and adsorption of fosthiazate in soil. J. Agric. Food Chem. 52, 6239–6242 (2004)

    Article  CAS  Google Scholar 

  14. A.K. Isaacs, S. Qi, R. Sarpong, J.E. Casida, Insect ryanodine receptor: distinct but coupled insecticide binding sites for [N-C3H3] chlorantraniliprole, flubendiamide, and [3H] ryanodine. Chem. Res. Toxicol. 25, 1571–1573 (2012)

    Article  CAS  Google Scholar 

  15. G.P. Lahm, T.M. Stevenson, T.P. Selby, J.H. Freudenberger, D. Cordova, L. Flexner, C.A. Bellin, C.M. Dubas, B.K. Smith, K.A. Hughes, Rynaxypyr™: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorg. Med. Chem. Lett. 17, 6274–6279 (2007)

    Article  CAS  Google Scholar 

  16. T.P. Selby, G.P. Lahm, T.M. Stevenson, K.A. Hughes, D. Cordova, I.B. Annan, J.D. Barry, E.A. Benner, M.J. Currie, T.F. Pahutski, Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg. Med. Chem. Lett. 23, 6341–6345 (2013)

    Article  CAS  Google Scholar 

  17. T. Schmidt, M. Puhl, J. Dickhaut, H.M.M. Bastiaans, M. Rack, D.L. Culbertson, D.D. Anspaugh, F.J. Braun, T. Bucci, H. Cotter, Preparation of N-thio-anthranilamide compounds and their use as pesticides. EPO. WO 2007006670 (2007), pp. 179–180

  18. J.L. Li, Z.C. Zhang, X.Y. Xu, X.S. Shao, Z. Li, Nematicidal activities of diamides with diphenylacetylene scaffold against Meloidogyne incognita. Aust. J. Chem. (2015). doi:10.1071/CH15065

    Google Scholar 

  19. H.C. Kolb, K.B. Sharpless, The growing impact of click chemistry on drug discovery. Drug Discov. Today 8, 1128–1137 (2003)

    Article  CAS  Google Scholar 

  20. J.E. Moses, A.D. Moorhouse, The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007)

    Article  CAS  Google Scholar 

  21. K. Barral, A.D. Moorhouse, J.E. Moses, Efficient conversion of aromatic amines into azides: a one-pot synthesis of triazole linkages. Org. Lett. 9, 1809–1811 (2007)

    Article  CAS  Google Scholar 

  22. J.F. Zhang, J.Y. Xu, B.L. Wang, Y.X. Li, L.X. Xiong, Y.Q. Li, Y. Ma, Z.M. Li, Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea. J. Agric. Food Chem. 60, 7565–7572 (2012)

    Article  CAS  Google Scholar 

  23. A.L. Taylor, J.N. Sasser, Biology, Identification and Control of Root-Knot Nematodes (Meloidogyne Species), vol. 2 (North Carolina State University, Raleigh, 1978), p. 111

    Google Scholar 

  24. N.G. Ravichandra, Nematological Techniques, Horticultural Nematology, chap. 11 (Springer, New Delhi, 2014), pp. 293–368. doi:10.1007/978-81-322-1841-8_11

    Google Scholar 

  25. K.L. Hsu, K. Tsuboi, L.R. Whitby, A.E. Speers, H. Pugh, J. Inloes, B.F. Cravatt, Development and optimization of piperidyl-1,2,3-triazole ureas as selective chemical probes of endocannabinoid biosynthesis. J. Med. Chem. 56, 8257–8269 (2013)

    Article  CAS  Google Scholar 

  26. A. Adibekian, B.R. Martin, C. Wang, K.L. Hsu, D.A. Bachovchin, S. Niessen, H. Hoover, B.F. Cravatt, Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat. Chem. Biol. 7, 469–478 (2011)

    Article  CAS  Google Scholar 

  27. Z.J. Wang, Y. Gao, Y.L. Hou, C. Zhang, S.J. Yu, Q. Bian, Z.M. Li, W.G. Zhao, Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. Eur. J. Med. Chem. 86, 87–94 (2014)

    Article  CAS  Google Scholar 

  28. N.N. Su, Y. Li, S.J. Yu, X. Zhang, X.H. Liu, W.G. Zhao, Microwave-assisted synthesis of some novel 1,2,3-triazoles by click chemistry, and their biological activity. Res. Chem. Intermed. 39, 759–766 (2013)

    Article  CAS  Google Scholar 

  29. W. Yang, H.X. Wu, H.H. Xu, A.L. Hu, M.L. Lu, Synthesis of glucose–fipronil conjugate and its phloem mobility. J. Agric. Food Chem. 59, 12534–12542 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (863 Program, 2013AA065202). This work was also partly supported by National Natural Science Foundation of China (21272071) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xiao, Y., Wang, G. et al. Synthesis of novel 1,2,3-triazole-containing pyridine–pyrazole amide derivatives based on one-pot click reaction and their evaluation for potent nematicidal activity against Meloidogyne incognita . Res Chem Intermed 42, 5495–5508 (2016). https://doi.org/10.1007/s11164-015-2381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2381-y

Keywords

Navigation