Skip to main content
Log in

Raman and infrared spectra, crystal structure and DFT calculations of novel N-benzyl-4-(3-benzylcarbamoyl-propyldisulfanyl)-butyramide: [C6H5CH2NHC(O)(CH2)4S]2

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

N-Benzyl-4-(3-benzylcarbamoyl-propyldisulfanyl)-butyramide (BBCPB, C22H28N2O2S2) has been synthesized and a single crystal of the title compound was obtained. Moreover, the Raman (100–3,500 cm−1) and infrared (200–4,000 cm−1) spectra of the solid sample were recorded and the structure of BBCPB was characterized by single-crystal X-ray diffraction. The C=O and N–H moieties of two symmetrically independent molecules in the unit cell interact via intermolecular hydrogen bonds (C=O···N–H)], whereas the benzene rings are oriented diagonally in opposite directions. The unit cell parameters are: a = 5.4500 (3) Å, b = 8.6362 (4) Å, and c = 23.4738 (14) Å. The molecular geometry and the vibrational frequencies of an isolated molecule was optimized using Density Functional Theory with the methods of B3LYP and B3PW91 utilizing the 6-31G(d) basis set. The computed bond lengths were found to be in excellent agreement with X-ray values (R 2 = of 0.96–0.97), whereas the bond angles were less congruent with the B3LYP and B3PW91 methods (R 2 = 0.58–0.74). These deviations are attributed to the absence of intermolecular interaction for the predicted values of an isolated molecule of BBCPB. Aided by normal coordinate analysis, all observed infrared and Raman bands are assigned to their corresponding fundamentals in agreement with B3LYP/6-31G(d) and B3PW91/6-31G(d) predicted wavenumbers. The results presented here are compared with similar molecules whenever appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Arjunan, S. Mohan, S. Subramanian, B.T. Gowda, Spectrochim. Acta Part A 60(5), 1141 (2004)

    Article  CAS  Google Scholar 

  2. A.C. Scott, Physica D51, 333 (1990)

    Google Scholar 

  3. T. Benkui, J.P. Boyd, Phys. Lett. A 240, 282 (1998)

    Article  Google Scholar 

  4. G. Kalosakas, S. Aubry, G.P. Tsironis, Phys. Lett. A247, 413 (1998)

    Article  Google Scholar 

  5. X.F. Pang, X.R. Chen, J. Phys. Chem. Solids 62, 793 (2001)

    Article  CAS  Google Scholar 

  6. J. Zabicky, The Chemistry of Amides (Wiley, New York, 1970)

    Google Scholar 

  7. G. Solomons, C. Fryhle, Organic chemistry, 7th edn. (Wiley, New York, 2000)

    Google Scholar 

  8. H. Sigel, R.B. Martin, Chem. Rev. 82, 385 (1982)

    Article  CAS  Google Scholar 

  9. O. Clement, B.M. Rapko, B.P. Hay, Coord. Chem. Rev. 170, 203 (1998)

    Article  CAS  Google Scholar 

  10. S.G. Kerr, T.I. Kalman, J. Pharm. Sci. 83, 582 (1994)

    Article  CAS  Google Scholar 

  11. A. Donetti, E. Cereda, E. Bellora, A. Gallazzi, C. Bazzano, P. Vanoni, P. Del Soldato, R. Micheletti, F. Pagani, A. Giachetti, J. Med. Chem. 27, 380 (1984)

    Article  CAS  Google Scholar 

  12. T. Ren, Coord. Chem. Rev. 175, 43 (1998)

    Article  CAS  Google Scholar 

  13. Y. Wu, C. Yeh, Z. Chan, C. Lin, C. Yang, J. Chen, J. Wang, J. Mol. Struct. 890, 48 (2008)

    Article  CAS  Google Scholar 

  14. Y. Wu, J. Chen, L. Liou, J. Wang, Inorg. Chim. Acta 336, 71 (2002)

    Article  CAS  Google Scholar 

  15. S.J. Archibald, N.W. Alcock, D.H. Busch, D.R. Whitcomb, Inorg. Chem. 38, 5571 (1999)

    Article  CAS  Google Scholar 

  16. H. Lehr, L.O. Randall, M.W. Goldberg, J. Med. Chem. 6(4), 351 (1963)

    Article  CAS  Google Scholar 

  17. C. Malen, P. Roger, M. Laubie, (Science Union et Cie., Societ Francaise de Recherche Medicale, Fr.). Ger. Offen. (1979)

  18. M. Philippe, H. Andrean and P. Barbarat, Eur. Pat. Appl. 18 pp (2004)

  19. J. Maignan, M. Colin and G. Lang, Eur. Pat. Appl. 16 pp, (1990)

  20. R. Singh, L. Kats, W.A. Blättler, J.M. Lambert, Anal. Biochem. 236, 114 (1996)

    Article  CAS  Google Scholar 

  21. S. Yamakawa, A. Demizu, X. Kawaratani, Y. Nagaoka, Y. Terada, S. Maruyama, S. Uesato, Biol. Pharm. Bull. 31, 916 (2008)

    Article  CAS  Google Scholar 

  22. S. Xu, A.N. Butkevich, R. Yamada, Y. Zhou, B. Debnath, R. Duncan, E. Zandi, N.A. Petasis, N. Neamati, Proc. Natl. Acad. Sci. 109(40), 16348 (2012)

    Article  CAS  Google Scholar 

  23. I. Clark-Lewis, L.E. Hood, S.B.H. Kent, Proc. Natl. Acad. Sci. USA 85(21), 7897 (1988)

    Article  CAS  Google Scholar 

  24. R. Nagarajan, L.L. Huckstep, D.H. Lively, D.C. Delong, M.M. Marsh, N. Neuss, J. Am. Chem. Soc. 90, 2980 (1968)

    Article  CAS  Google Scholar 

  25. J. Koput, Chem. Phys. Lett. 259, 146 (1996)

    Article  CAS  Google Scholar 

  26. W. Qian, S. Krimm, Biopolymers 32, 321 (1992)

    Article  CAS  Google Scholar 

  27. M. Ruoppolo, F. Vinci, T.A. Klink, R.T. Raines, G. Marino, Biochemistry 39, 12033 (2000)

    Article  CAS  Google Scholar 

  28. J.M. Thornton, J. Mol. Biol. 151, 261 (1981)

    Article  CAS  Google Scholar 

  29. SHELXTL, An integrated system for solving and refining crystal structures from diffraction data (Revision 5.1), Bruker AXS Ltd.

  30. S. Mackay, C.J. Gilmore, C. Edwards, N. Stewart, & K. Shankland. maXus Computer Program for the Solution and Refinement of Crystal Structures. Bruker Nonius, The Netherlands, MacScience, Japan & The University of Glasgow (1999)

  31. C.K. Johnson, ORTEP-II. A Fortran Thermal-Ellipsoid Plot Program. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA (1976)

  32. Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation mode, in Methods in enzymology, macromolecular crystallography, part A, ed. by C.W. Carter Jr, R.M. Sweet (Academic Press, New York, 1997), pp. 276–307

    Google Scholar 

  33. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, J.M. Camalli, J. Appl. Cryst. 27, 435 (1994)

    Google Scholar 

  34. D. Waasmaier, A. Kirfel, Acta Cryst. A51, 416 (1995)

    Article  CAS  Google Scholar 

  35. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98. Revision A.7 (Gaussian Inc., Pittsburgh, 1998)

    Google Scholar 

  36. W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, Ab initio molecular orbital theory (Wiley, New York, 1986)

    Google Scholar 

  37. M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80, 3265 (1984)

    Article  CAS  Google Scholar 

  38. A.D. Becke, Phys. Rev. A38, 3098 (1988)

    Article  Google Scholar 

  39. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B37, 785 (1988)

    Article  Google Scholar 

  40. A.D. Becke, Chem. Phys. Rev. 98, 5648 (1993)

    CAS  Google Scholar 

  41. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B54, 16533 (1996)

    Article  Google Scholar 

  42. P. Pulay, Mol. Phys. 17, 197 (1969)

    Article  CAS  Google Scholar 

  43. A.M. Abuelela, R.S. Farag, T.A. Mohamed, O.V. Prezhdo, J. Phys. Chem. Part C 117, 19489 (2013)

    CAS  Google Scholar 

  44. M. Cibian, S. Derossi, G.S. Hanan, Acta Cryst. E65, o2485 (2009)

    Google Scholar 

  45. J.A. Pople, H.B. Schlegel, R. Krishnan, J.S. Defrees, J.S. Binkley, M.J. Frisch, R.A. Whiteside, Int. J. Quantum Chem. Quantum Chem. Symp. 15, 269 (1981)

    CAS  Google Scholar 

  46. S. Wang, Q. He, J. Wang, Y. Qu, Spectrochim. Acta. PartA 87, 179 (2012)

    Article  CAS  Google Scholar 

  47. A. Michta, M. Nowak, J. Kusz, Acta Cryst. C64, o633 (2008)

    Google Scholar 

  48. M.H. Goodrow, M.M. Olmstead, W.K. Musker, Tetrahedron Lett. 23, 3231 (1982)

    Article  CAS  Google Scholar 

  49. M.H. Goodrow, M.M. Olmstead, W.K. Musker, Phosphorus Sulfur. 16, 299 (1983)

    Article  CAS  Google Scholar 

  50. H.E. Van Wart, L.L. Shipman, H.A. Scheraga, J. Phys. Chem. 78, 1848 (1974)

    Article  Google Scholar 

  51. M. Gussoni, C. Castiglioni, M.N. Ramos, M.C. Rui, G. Zerbi, J. Mol. Struct. 224, 445 (1990)

    Article  CAS  Google Scholar 

  52. D.A. Kleinaman, Phys. Rev. Lett. 126, 1977 (1962)

    Google Scholar 

  53. M. Silverstein, G.C. Bassler, C. Morill, Spectrometric Identification of Organic Compounds (Wiley, New York, 1981)

    Google Scholar 

  54. L.J. Belamy, The Infrared Spectra of Complex Molecules, vol. 1, 3rd edn. (John Wiley, New York, 1975)

    Book  Google Scholar 

  55. U.A. Soliman, A.M. Hassan, T.A. Mohamed, Spectrochim. Acta. Part A 68, 688 (2007)

    Article  Google Scholar 

  56. W.P. Griffith, T.Y. Koh, Spectrochim. Acta. Part A 51, 253 (1995)

    Article  Google Scholar 

  57. J.R. Durig, B.R. Drew, G.A. Guirgis, J. Raman Spectrosc. 32, 757 (2001)

    Article  CAS  Google Scholar 

  58. G. Varsanyi, Vibrational Spectra of Benzene Derivative (Academic Press, New York, 1969)

    Google Scholar 

  59. F.R. Dollish, W.J. Fateley, Characteristic Raman frequencies of organic compounds (Wiley, New York, 1997)

    Google Scholar 

  60. T. Shimanouchi, Y. Kakiuti, I. Gamo, J. Chem. Phys. 25, 1245 (1956)

    Article  CAS  Google Scholar 

  61. E.J. Bastian, R.B. Martin, J. Phys. Chem. 77(9), 1129 (1973)

    Article  CAS  Google Scholar 

  62. M. Ramalingam, N. Sundaraganesan, H. Saleem, J. Swamianathan, Spectrochim. Acta Part A 71, 23 (2008)

    Article  CAS  Google Scholar 

  63. D. Mahadevan, S. Periandy, S. Ramalingam, Spectrochim. Acta. Part A 84, 86 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. A. H. Karoyo at the University of Saskatchewan is acknowledged for his technical assistance in acquiring the Raman spectrum of N-benzyl-4-(3-benzylcarbamoyl-propyldisulfanyl)-butyramide.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ja’afar K. Jawad or Tarek A. Mohamed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawad, J.K., Mohamed, T.A., Soliman, U.A. et al. Raman and infrared spectra, crystal structure and DFT calculations of novel N-benzyl-4-(3-benzylcarbamoyl-propyldisulfanyl)-butyramide: [C6H5CH2NHC(O)(CH2)4S]2 . Res Chem Intermed 41, 4761–4784 (2015). https://doi.org/10.1007/s11164-014-1566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1566-0

Keywords

Navigation