Skip to main content
Log in

Special features on insulin resistance, metabolic syndrome and vascular complications in hypopituitary patients

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Pituitary hormone deficiency, hypopituitarism, is a dysfunction resulting from numerous etiologies, which can be complete or partial, and is therefore heterogeneous. This heterogeneity makes it difficult to interpret the results of scientific studies with these patients.

Adequate treatment of etiologies and up-to-date hormone replacement have improved morbidity and mortality rates in patients with hypopituitarism. As GH replacement is not performed in a reasonable proportion of patients, especially in some countries, it is essential to understand the known consequences of GH replacement in each subgroup of patients with this heterogeneous dysfunction.

In this review on hypopituitarism, we will address some particularities regarding insulin resistance, which is no longer common in these patients with hormone replacement therapy based on current guidelines, metabolic syndrome and its relationship with changes in BMI and body composition, and to vascular complications that need to be prevented taking into account the individual characteristics of each case to reduce mortality rates in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

N/A All data in this review are in the respective publications.

Abbreviations

ACTH:

Adrenocorticotrophic Hormone

AOGHD:

Adulthood-onset Growth Hormone Deficiency

CVD:

Cardiovascular Disease

COGHD:

Childhood-onset Growth Hormone Deficiency

EHC:

Euglycemic Hyperinsulinemic Clamp

aGHD:

adult patient with Growth Hormone Deficiency

BMI:

Body Mass Index

GH:

Growth Hormone

GHD:

Growth Hormone Deficiency

GHRH:

Growth Hormone Release Hormone

GHRT:

Growth Hormone Replacement Therapy

GTT:

Glucose Tolerance Test

HOMA:

Homeostatic Model Assessment

HP:

Hypopituitarism

IGF:

Insulin Growth Factor

IGFBP:

Insulin Growth Factor Binding Protein

IGFR:

Insulin Growth Factor Receptor

IS:

Insulin Sensitivity

IR:

Insulin Resistance

Kda:

Kilodalton

MetS:

Metabolic Syndrome

WHO:

World Health Organization

References

  1. Garmes HM, Boguszewski CL, Miranda PAC, Martins MRA, da Silva SRC, Abucham JZ Filho, et al. Management of hypopituitarism: a perspective from the Brazilian Society of Endocrinology and Metabolism. Arch Endocrinol Metab. 2021;65(2):212–30. https://doi.org/10.20945/2359-3997000000335.

  2. Regal M, Páramo C, Sierra SM, Garcia-Mayor RV. Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin Endocrinol (Oxf). 2001;6:735–40. https://doi.org/10.1046/j.1365-2265.2001.01406.x.

    Article  Google Scholar 

  3. Stochholm K, Gravholt CH, Laursen T, Jørgensen JO, Laurberg P, Andersen M, et al. Incidence of GH deficiency – a nationwide study. Eur J Endocrinol. 2006;155(1):61–71. https://doi.org/10.1530/eje.1.02191.

    Article  CAS  PubMed  Google Scholar 

  4. Rosén T, Bengtsson BA. Premature mortality due to cardiovascular disease in hypopituitarism. Lancet. 1990;336(8710):285–8. https://doi.org/10.1016/0140-6736(90)91812-o.

    Article  PubMed  Google Scholar 

  5. Pappachan JM, Raskauskiene D, Kutty VR, Clayton RN. Excess mortality associated with hypopituitarism in adults: a meta-analysis of observational studies. J Clin Endocrinol Metab. 2015;100:1405–11. https://doi.org/10.1210/jc.2014-3787.

    Article  CAS  PubMed  Google Scholar 

  6. Jasim S, Alahdab F, Ahmed AT, Tamhane S, Prokop LJ, Nippoldt TB, et al. Mortality in adults with hypopituitarism: a systematic review and meta-analysis. Endocrine. 2017;56(1):33–42. https://doi.org/10.1007/s12020-016-1159-3.

    Article  CAS  PubMed  Google Scholar 

  7. Gaillard RC, Mattsson AF, Akerblad AC, Bengtsson BÅ, Cara J, Feldt-Rasmussen U, et al. Overall and cause-specific mortality in GH-deficient adults on GH replacement. Eur J Endocrinol. 2012;166(6):1069–77. https://doi.org/10.1530/EJE-11-1028.

    Article  CAS  PubMed  Google Scholar 

  8. Fleseriu M, Hashim IA, Karavitaki N, Melmed S, Murad MH, Salvatori R, et al. Hormonal Replacement in Hypopituitarism in Adults: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101:3888–921. https://doi.org/10.1210/jc.2016-2118.

    Article  CAS  PubMed  Google Scholar 

  9. Patti M-E, Kahn CR. The Insulin Receptor – A Critical Link in Glucose Homeostasis and Insulin Action. J Basic Clin Physiol Pharmacol. 1998;9:2–4. https://doi.org/10.1515/jbcpp.1998.9.2-4.89.

    Article  Google Scholar 

  10. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009;2:231–7. https://doi.org/10.1242/dmm.001180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Himsworth HP. RBK. Insulin-sensitive and insulin-insensitive types of diabetes mellitus. Clin Sci. 1939;4:119–52.

  12. Taylor SI, Accili D, Imai Y. Insulin resistance or insulin deficiency. Which is the primary cause of NIDDM? Diabetes. 1994;43:735–40. https://doi.org/10.2337/diab.43.6.735.

  13. Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest. 1981;68:1456–67. https://doi.org/10.1172/jci110398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrannini E, Mari A. How to measure insulin sensitivity. J Hypertens. 1998;16:895–906. https://doi.org/10.1097/00004872-199816070-00001.

  15. Liu JL, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ, et al. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab. 2004;287:405–13. https://doi.org/10.1152/ajpendo.00423.2003.

    Article  Google Scholar 

  16. Ciresi A, Guarnotta V, Pizzolanti G, Giordano C. Comparison between euglycemic hyperinsulinemic clamp and surrogate indices of insulin sensitivity in children with growth hormone deficiency. Growth Horm IGF Res. 2018;39:40–4. https://doi.org/10.1016/j.ghir.2017.12.007.

    Article  CAS  PubMed  Google Scholar 

  17. Castillo AR, de Souza AL, Alegre SM, Atala YB, Zantut-Wittmann DE, Garmes HM. Insulin Sensitivity Is Not Decreased in Adult Patients With Hypopituitarism Without Growth Hormone Replacement. Front Endocrinol. 2019;10:534. https://doi.org/10.3389/fendo.2019.00534.

    Article  Google Scholar 

  18. Guevara-Aguirre J, Teran E, Lescano D, Guevara C, Guevara A, Saavedra J, et al. Assessing insulin sensitivity and resistance in syndromes of severe short stature. Growth Horm IGF Res. 2020;53–54: 101339. https://doi.org/10.1016/j.ghir.2020.101339.

    Article  CAS  PubMed  Google Scholar 

  19. Johansson JO, Fowelin J, Landin K, Lager I, Bengtsson BA. Growth hormone-deficient adults are insulin resistant. Metabolism. 1995;44:1126–9. [PubMed] [Google Scholar]. https://doi.org/10.1016/0026-0495(95)90004-7.

  20. Hew FL, Koschmann M, Christopher M, Rantzau C, Vaag A, Ward G, et al. Insulin resistance in growth hormone-deficient adults: defects in glucose utilization and glycogen synthase activity. J Clin Endocrinol Metab. 1996;81:555–64. https://doi.org/10.1210/jcem.81.2.8636267.

    Article  CAS  PubMed  Google Scholar 

  21. Ukropec J, Penesová A, Skopková M, Pura M, Vlcek M, Rádiková Z, et al. Adipokine protein expression pattern in growth hormone deficiency predisposes to the increased fat cell size and the whole body metabolic derangements. J Clin Endocrinol Metab. 2008;93:2255–62. https://doi.org/10.1210/jc.2007-2188.

    Article  CAS  PubMed  Google Scholar 

  22. Balaž M, Ukropcova B, Kurdiova T, Vlcek M, Surova M, Krumpolec P, et al. Improved adipose tissue metabolism after 5-year growth hormone replacement therapy in growth hormone deficient adults: The role of zinc-α2-glycoprotein. Adipocyte. 2014;4:113–22. https://doi.org/10.4161/21623945.2014.973772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pincelli AI, Brunani A, Scacchi M, Dubini A, Borsotti R, Tibaldi A, et al. The serum concentration of tumor necrosis factor alpha is not an index of growth-hormone- or obesity-induced insulin resistance. Horm Res. 2001;55:57–64. https://doi.org/10.1159/000049971.

    Article  CAS  PubMed  Google Scholar 

  24. Bülow B, Link K, Ahrén B, Nilsson AS, Erfurth EM. Survivors of childhood acute lymphoblastic leukaemia, with radiation-induced GH deficiency, exhibit hyperleptinaemia and impaired insulin sensitivity, unaffected by 12 months of GH treatment. Clin Endocrinol (Oxf). 2004;61:683–91. https://doi.org/10.1111/j.1365-2265.2004.02149.x.

    Article  CAS  PubMed  Google Scholar 

  25. Krusenstjerna-Hafstrøm T, Clasen BF, Møller N, Jessen N, Pedersen SB, Christiansen JS, et al. Growth hormone (GH)-induced insulin resistance is rapidly reversible: an experimental study in GH-deficient adults. J Clin Endocrinol Metab. 2011;96:2548–57. https://doi.org/10.1210/jc.2011-0273.

    Article  CAS  PubMed  Google Scholar 

  26. Garmes HM, Castillo AR, Monte Alegre S, de Souza AL, Atala YB, Zantut-Wittmann DE. Childhood-Onset GH Deficiency versus Adult-Onset GH Deficiency: Relevant Differences Regarding Insulin Sensitivity. Metabolites. 2022;12(12):1251. https://doi.org/10.3390/metabo12121251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wijnen M, Olsson DS, van den Heuvel-Eibrink MM, Hammarstrand C, Janssen JAMJL, van der Lely AJ, et al. The metabolic syndrome and its components in 178 patients treated for craniopharyngioma after 16 years of follow-up. Eur J Endocrinol. 2018;178:11–22. https://doi.org/10.1530/EJE-17-0387.

  28. Al-Shoumer KAS, Beshyah SA, Niththyananthan R, Johnston DG. Effect of glucocorticoid replacement therapy on glucose tolerance and intermediary metabolites in hypopituitary adults. Clin Endocrinol (Oxf). 1995;42:85–90. https://doi.org/10.1111/j.1365-2265.1995.tb02602.x.

    Article  CAS  PubMed  Google Scholar 

  29. Masternak MM, Bartke A, Wang F, Spong A, Gesing A, Fang Y, et al. Metabolic effects of intra-abdominal fat in GHRKO mice. Aging Cell. 2012;11:73–81. https://doi.org/10.1111/j.1474-9726.2011.00763.x.

    Article  CAS  PubMed  Google Scholar 

  30. Bennis MT, Schneider A, Victoria B, Do A, Wiesenborn DS, Spinel L, et al. The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling. Geroscience. 2017;39:51–9. https://doi.org/10.1007/s11357-017-9957-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Casanueva FF, Camiña JP, Carreira MC, Pazos Y, Varga JL, Schally AV. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a. Proc Natl Acad Sci U S A. 2008;105:20452–7. https://doi.org/10.1073/pnas.0811680106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamashita S, Melmed S. Insulin-like growth factor I action on rat anterior pituitary cells: suppression of growth hormone secretion and messenger ribonucleic acid levels. Endocrinology. 1986;118:176–82. https://doi.org/10.1210/endo-118-1-176.

    Article  CAS  PubMed  Google Scholar 

  33. Roth J, Glick SM, Yalow RS, Berson SA. Hypoglycemia: a potent stimulus to secretion of growth hormone. Science. 1963;140:987–8. https://doi.org/10.1126/science.140.3570.987.

    Article  CAS  PubMed  Google Scholar 

  34. Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci U S A. 1999;96:7324–9. https://doi.org/10.1073/pnas.96.13.7324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vijayakumar A, Yakar S, Leroith D. The intricate role of growth hormone in metabolism. Front Endocrinol (Lausanne). 2011;2:32. https://doi.org/10.3389/fendo.2011.00032.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34. https://doi.org/10.1210/edrv-16-1-3.

    Article  CAS  PubMed  Google Scholar 

  37. Garmes HM, Castillo AR. Insulin signaling in the whole spectrum of GH deficiency. Arch Endocrinol Metab. 2019;63(6):582–91. https://doi.org/10.20945/2359-3997000000188.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oliveira CR, Salvatori R, Barreto-Filho JA, Rocha IE, Mari A, Pereira RM, et al. Insulin Sensitivity and β-Cell Function in Adults with Lifetime, Untreated Isolated Growth Hormone Deficiency. J Clin Endocrinol Metab. 2012;97:1013–9. https://doi.org/10.1210/jc.2011-2590.

    Article  CAS  PubMed  Google Scholar 

  39. Laron Z, Avitzur Y, Klinger B. Carbohydrate metabolism in primary growth hormone resistance (Laron syndrome) before and during insulin-like growth factor-I treatment. Metabolism. 1995;44:113–8. https://doi.org/10.1016/0026-0495(95)90231-7.

    Article  CAS  PubMed  Google Scholar 

  40. Guevara-Aguirre J, Guevara A, Bahamonde M. Insulin resistance depends on GH counter-regulation in two syndromes of short stature. Growth Horm IGF Res. 2018;38:44–8. https://doi.org/10.1016/j.ghir.2017.12.012.

    Article  CAS  PubMed  Google Scholar 

  41. Fowelin J, Attvall S, Lager I, Bengtsson BA. Effects of treatment with recombinant human growth hormone on insulin sensitivity and glucose metabolism in adults with growth hormone deficiency. Metabolism. 1993;42:1443–7. https://doi.org/10.1016/0026-0495(93)90197-v.

    Article  CAS  PubMed  Google Scholar 

  42. Bramnert M, Segerlantz M, Laurila E, Daugaard JR, Manhem P, Groop L. Growth Hormone Replacement Therapy Induces Insulin Resistance by Activating the Glucose-Fatty Acid Cycle. J Clin Endocrinol Metab. 2003;88:1455–63. https://doi.org/10.1210/jc.2002-020542.

  43. Heptulla RA, Boulware SD, Caprio S, Silver D, Sherwin RS, Tamborlane WV. Decreased Insulin Sensitivity and Compensatory Hyperinsulinemia after Hormone Treatment in Children with Short Stature. J Clin Endocrinol Metab. 1997;82:3234–8. https://doi.org/10.1210/jcem.82.10.4302.

    Article  CAS  PubMed  Google Scholar 

  44. Ciresi A, Amato MC, Giordano C. Reduction in insulin sensitivity and inadequate β-cell capacity to counteract the increase in insulin resistance in children with idiopathic growth hormone deficiency during 12 months of growth hormone treatment. J Endocrinol Invest. 2015;38:351–9. https://doi.org/10.1007/s40618-014-0184-4.

    Article  CAS  PubMed  Google Scholar 

  45. Yuen KC, Frystyk J, White DK, Twickler TB, Koppeschaar HP, Harris PE, et al. Improvement in insulin sensitivity without concomitant changes in body composition and cardiovascular risk markers following fixed administration of a very low growth hormone (GH) dose in adults with severe GH deficiency. Clin Endocrinol (Oxf). 2005;63:428–36. https://doi.org/10.1111/j.1365-2265.2005.02359.x.

    Article  CAS  PubMed  Google Scholar 

  46. Luger A, Mattsson AF, Koltowska-Häggström M, Thunander M, Góth M, Verhelst J, et al. Incidence of diabetes mellitus and evolution of glucose parameters in growth hormone-deficient subjects during growth hormone replacement therapy: a long-term observational study. Diabetes Care. 2012;35:57–62. https://doi.org/10.2337/dc11-0449.

    Article  CAS  PubMed  Google Scholar 

  47. Roemmler J, Kuenkler M, Schneider HJ, Dieterle C, Schopohl J. Comparison of glucose and lipid metabolism and bone mineralization in patients with growth hormone deficiency with and without long-term growth hormone replacement. Metabolism. 2010;59:350–8. https://doi.org/10.1016/j.metabol.2009.08.002.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou H, Sun L, Zhang S, Wang Y, Wang G. Effect of long-term growth hormone replacement on glucose metabolism in adults with growth hormone deficiency: a systematic review and meta-analysis. Pituitary. 2021;24(1):130–42. https://doi.org/10.1007/s11102-020-01079-3.

    Article  CAS  PubMed  Google Scholar 

  49. Jørgensen JO, Møller J, Alberti KG, Schmitz O, Christiansen JS, Orskov H, et al. Marked effects of sustained low growth hormone (GH) levels on day-to-day fuel metabolism: studies in GH-deficient patients and healthy untreated subjects. J Clin Endocrinol Metab. 1993;77(6):1589–96. https://doi.org/10.1210/jcem.77.6.8263146.

    Article  PubMed  Google Scholar 

  50. Hjelholt AJ, Charidemou E, Griffin JL, Pedersen SB, Gudiksen A, Pilegaard H, et al. Insulin resistance induced by growth hormone is linked to lipolysis and associated with suppressed pyruvate dehydrogenase activity in skeletal muscle: a 2 × 2 factorial, randomised, crossover study in human individuals. Diabetologia. 2020;63(12):2641–53. https://doi.org/10.1007/s00125-020-05262-w.

    Article  CAS  PubMed  Google Scholar 

  51. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103:253–9. https://doi.org/10.1172/JCI5001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Enzi G, Busetto L, Inelmen EM, Coin A, Sergi G. Historical perspective: visceral obesity and related comorbidity in Joannes Baptista Morgagni’s “De sedibus et causis morborum per anatomen indagata.” Int J Obes Relat Metab Disord. 2003;27(4):534–5. https://doi.org/10.1038/sj.ijo.0802268.

    Article  CAS  PubMed  Google Scholar 

  53. Hanefeld M, Leonhardt W. Das Metabolische Syndrom Dt Gesundh Wesen. 1981;36:545–51.

    Google Scholar 

  54. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94. https://doi.org/10.2337/diacare.14.3.173.

    Article  CAS  PubMed  Google Scholar 

  55. NCEP/ATPIII. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97. https://doi.org/10.1001/jama.285.19.2486.

  56. Alberti KG, Zimmet P, Shaw J. IDF Epidemiology Task Force Consensus Group The metabolic syndrome – a new worldwide definition. Lancet. 2005;366(9491):1059–62. https://doi.org/10.1016/S0140-6736(05)67402-8.

  57. Hirode G, Wong RJ. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011–2016. JAMA. 2020;323(24):2526–8. https://doi.org/10.1001/jama.2020.4501.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meigs JB, Wilson PW, Fox CS, Vasan RS, Nathan DM, Sullivan LM, et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab. 2006;91(8):2906–12. https://doi.org/10.1210/jc.2006-0594.

    Article  CAS  PubMed  Google Scholar 

  59. Gami AS, Witt BJ, Howard DE, Ervin PJ, Gami LA, Somers VK, et al. Metabolic syndrome and risk of incident cardiovascular events and death. J Am Coll Cardiol. 2007;49(4):403–14. https://doi.org/10.1016/j.jacc.2006.09.032.

    Article  CAS  PubMed  Google Scholar 

  60. Ford ES, Schulze MB, Pischon T, Bergmann MM, Joost H-G, Boeing H. Metabolic syndrome and risk of incident diabetes: findings from the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. Cardiovascular Diabetology. 2008;7:35–42. https://doi.org/10.1186/1475-2840-7-35.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. Journal of the American College of Cardiology. 2010;56:1113–32. https://doi.org/10.1016/j.jacc.2010.05.034.

    Article  PubMed  Google Scholar 

  62. Qiao Q, Laatikainen T, Zethelius B, Stegmayr B, Eliasson M, Jousilahti P, et al. Comparison of definitions of metabolic syndrome in relation to the risk of developing stroke and coronary heart disease in Finnish and Swedish cohorts. Stroke. 2009;40:337–433. https://doi.org/10.1161/STROKEAHA.108.518878.

    Article  PubMed  Google Scholar 

  63. Verhelst J, Mattsson AF, Luger A, Thunander M, Góth MI, Koltowska-Häggström M, et al. Prevalence and characteristics of the metabolic syndrome in 2479 hypopituitary patients with adult-onset GH deficiency before GH replacement: a KIMS analysis. Eur J Endocrinol. 2011;165(6):881–9. https://doi.org/10.1530/EJE-11-0599.

    Article  CAS  PubMed  Google Scholar 

  64. Van der Klaauw, Biermasz NR, Feskens EJ, Bos MB, Smit JW, Roelfsema F, et al. The prevalence of the metabolic syndrome is increased in patients with GH deficiency, irrespective of long-term substitution with recombinant human GH. Eur J Endocrinol. 2007;156:455–62. https://doi.org/10.1530/EJE-06-0699.

  65. Nyenwe EA, Williamson-Baddorf S, Waters B, Wan JY, Solomon SS. Nonalcoholic Fatty liver disease and metabolic syndrome in hypopituitary patients. Am J Med Sci. 2009;338(3):190–5. https://doi.org/10.1097/MAJ.0b013e3181a84bde.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Attanasio AF, Mo D, Erfurth EM, Tan M, Ho KY, Kleinberg D, et al. Prevalence of the metabolic syndrome in adult growth hormone (GH) –deficient patients before and after GH replacement. J Clin Endocrinol Metab. 2010;95:74–81. https://doi.org/10.1210/jc.2009-1326.

    Article  CAS  PubMed  Google Scholar 

  67. Abe SY, Dos Santos KS, Barbosa BFB, Biondo CMP, Takito D, Hayashi SK, et al. Metabolic syndrome and its components in adult hypopituitary patients. Pituitary. 2020;23(4):409–16. https://doi.org/10.1007/s11102-020-01048-w.

    Article  PubMed  Google Scholar 

  68. Li T, Sun LS, Wang C, Li JW, An ZM, Yu YR. Clinical features and risk factors of metabolic syndrome in adult hypopituitary patients. Zhonghua Yi Xue Za Zhi. 2021;101(36):2885–92. https://doi.org/10.3760/cma.j.cn112137-20210107-00044.

    Article  CAS  PubMed  Google Scholar 

  69. Koulouri O, Auldin M, Agarwal R, Keiffer V, Robertson C, Falconer Smith J, et al. Diagnosis and treatment of hypothyroidism in TSH deficiency compared to primary thyroid disease: pituitary patients are at risk of under-replacement with levothyroxine. Clin Endocrinol (Oxf). 2011;6:744–49. https://doi.org/10.1111/j.1365-2265.2011.03984.x.

  70. O’Reilly MW, Reulen RC, Gupta S, Thompson CA, Dineen R, Goulden EL, et al. ACTH and gonadotropin deficiencies predict mortality in patients treated for nonfunctioning pituitary adenoma: long-term follow-up of 519 patients in two large European centers. Clin Endocrinol. 2016;85:748–56. https://doi.org/10.1111/cen.13141.

    Article  CAS  Google Scholar 

  71. Filipson H, Monson JP, Koltowska-Häggström M, Mattsson A, Johansson G. The impact of glucocorticoid replacement regimens on metabolic outcome and comorbidity in hypopituitary patients. J Clin Endocrinol Metab. 2006;91:3954–61. https://doi.org/10.1210/jc.2006-0524.

    Article  CAS  Google Scholar 

  72. Scarano E, Solari D, Riccio E, Arianna R, Somma T, Cavallo LM, et al. Craniopharyngioma and Metabolic Syndrome: A 5-Year Follow-Up Single-Center Experience. Front Neurol. 2022;13: 783737. https://doi.org/10.3389/fneur.2022.783737.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Abs R, Mattsson AF, Bengtsson BA, Feldt-Rasmussen U, Góth MI, Koltowska-Häggström M, et al. Isolated growth hormone (GH) deficiency in adult patients: baseline clinical characteristics and responses to GH replacement in comparison with hypopituitary patients. A sub-analysis of the KIMS database. Growth Horm IGF Res. 2005;15(5):349–59. https://doi.org/10.1016/j.ghir.2005.06.018.

  74. Claessen K, Appelman-Dijkstra N, Adoptie D, Roelfsema F, Smith J, Biermasz N, et al. Metabolic profile in growth hormone deficient (GHD) adults after long term recombinant human growth hormone (rhGH) therapy. J Clin Endocrinol Metab. 2013;98:352–61. https://doi.org/10.1210/jc.2012-2940.

    Article  CAS  PubMed  Google Scholar 

  75. Claessen KM, Appelman-Dijkstra NM, Pereira AM, Joustra SD, de Mutsert R, Gast KB, et al. Abnormal metabolic phenotype in middle-aged GH-deficient adults despite long-term recombinant human GH replacement. Eur J Endocrinol. 2013;170(2):263–72. https://doi.org/10.1530/EJE-13-0764.

    Article  CAS  PubMed  Google Scholar 

  76. Weber M, Biller BMK, Tønnes Pedersen B, Pornara E, Christiansen JS, Höybye C. The effect of growth hormone (GH) replacement on blood glucose homeostasis in adult non-diabetic patients with GH deficiency: real-life data from the Nordinet ® international outcome study. Clin Endocrinol. 2017;86:192–8. https://doi.org/10.1111/cen.13256.

    Article  CAS  Google Scholar 

  77. Scarano E, Riccio E, Somma T, Arianna R, Romano F, Di Benedetto E, et al. Impact of Long-Term Growth Hormone Replacement Therapy on Metabolic and Cardiovascular Parameters in Adult Growth Hormone Deficiency: Comparison Between Adult and Elderly Patients. Front Endocrinol (Lausanne). 2021;12: 635983. https://doi.org/10.3389/fendo.2021.635983.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Boguszewski CL. Individual sensitivity to growth hormone replacement in adults. Rev Endocr Metab Disord. 2021;22(1):117–24. https://doi.org/10.1007/s11154-020-09605-1.

    Article  CAS  PubMed  Google Scholar 

  79. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res. 2017;121(6):677–94. https://doi.org/10.1161/CIRCRESAHA.117.308903.

    Article  CAS  PubMed  Google Scholar 

  80. Bates AS, Van’t Hoff W, Jones PJ, Clayton RN. The effect of hypopituitarism on life expectancy. J Clin Endocrinol Metab. 1996;81(3):1169–72. https://doi.org/10.1210/jcem.81.3.8772595.

    Article  CAS  PubMed  Google Scholar 

  81. Bülow B, Hagmar L, Mikoczy Z, Nordström CH, Erfurth EM. Increased cerebrovascular mortality in patients with hypopituitarism. Clinical endocrinology. 1997;46(1):75–81. https://doi.org/10.1046/j.1365-2265.1997.d01-1749.x.

    Article  PubMed  Google Scholar 

  82. Tomlinson JW, Holden N, Hills RK, Wheatley K, Clayton RN, Bates AS, et al. Association between premature mortality and hypopituitarism. The Lancet. 2001;357(9254):425–31. https://doi.org/10.1016/s0140-6736(00)04006-x.

    Article  CAS  Google Scholar 

  83. Van Bunderen CC, Van Nieuwpoort IC, Arwert LI, Heymans MW, Franken AA, Koppeschaar HP, et al. Does growth hormone replacement therapy reduce mortality in adults with growth hormone deficiency? Data from the Dutch National Registry of Growth Hormone Treatment in adults. The Journal of Clinical Endocrinology & Metabolism. 2011;96(10):3151–9. https://doi.org/10.1210/jc.2011-1215.

    Article  CAS  Google Scholar 

  84. Burman P, Mattsson AF, Johannsson G, Höybye C, Holmer H, Dahlqvist P, et al. Deaths among adult patients with hypopituitarism: hypocortisolism during acute stress, and de novo malignant brain tumors contribute to an increased mortality. The Journal of Clinical Endocrinology & Metabolism. 2013;98(4):1466–75. https://doi.org/10.1210/jc.2012-4059.

    Article  CAS  Google Scholar 

  85. Ebrahimi F, Kutz A, Wagner U, Illigens B, Siepmann T, Schuetz P, et al. Excess mortality among hospitalized patients with hypopituitarism—a population-based, matched-cohort study. The Journal of Clinical Endocrinology & Metabolism. 2020;105(11):e3910–8. https://doi.org/10.1210/clinem/dgaa517.

    Article  Google Scholar 

  86. Kaji H, Chihara K. Direct causes of death in Japanese patients with hypopituitarism as analyzed from a nation-wide autopsy database. Eur J Endocrinol. 2004;150(2):149–52. https://doi.org/10.1530/eje.0.1500149.

    Article  CAS  PubMed  Google Scholar 

  87. Brada M, Burchell L, Ashley S, Traish D. The incidence of cerebrovascular accidents in patients with pituitary adenoma. Int J Radiat Oncol Biol Phys. 1999;45:693–8. https://doi.org/10.1016/s0360-3016(99)00159-5.

    Article  CAS  PubMed  Google Scholar 

  88. Erfurth EM, Bulow B, Nordstrom CH, Mikoczy Z, Hagmar L, Stromberg U. Doubled mortality rate in irradiated patients reoperated for regrowth of a macroadenoma of the pituitary gland. Eur J Endocrinol. 2004;150:497–502. https://doi.org/10.1530/eje.0.1500497.

    Article  CAS  PubMed  Google Scholar 

  89. De Boer H, Blok GJ, Voerman HJ, De Vries PM, van der Veen EA. Body composition in adult growth hormone-deficient men, assessed by anthropometry and bioimpedance analysis. J Clin Endocrinol Metab. 1992;75:833–7. https://doi.org/10.1210/jcem.75.3.1517374.

    Article  PubMed  Google Scholar 

  90. Rosen T, Wilhelmsen L, Landin-Wilhelmsen K, Lappas G, Bengtsson BA. Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur J Endocrinol. 1997;137:240–5. https://doi.org/10.1530/eje.0.1370240. PMID: 9330587.

    Article  CAS  PubMed  Google Scholar 

  91. Abdu TA, Neary R, Elhadd TA, Akber M, Clayton RN. Coronary risk in growth hormone deficient hypopituitary adults: increased predicted risk is due largely to lipid profile abnormalities. Clin Endocrinol (Oxf). 2001;55(2):209–16. https://doi.org/10.1046/j.1365-2265.2001.01320.x.

    Article  CAS  PubMed  Google Scholar 

  92. Sesmilo G, Miller KK, Hayden D, Klibanski A. Inflammatory cardiovascular risk markers in women with hypopituitarism. J Clin Endocrinol Metab. 2001;86(12):5774–81. https://doi.org/10.1210/jcem.86.12.8087.

    Article  CAS  PubMed  Google Scholar 

  93. Castillo AR, Zantut-Wittmann DE, Neto AM, Jales RM, Garmes HM. Panhypopituitarism Without GH Replacement: About Insulin Sensitivity, CRP Levels, and Metabolic Syndrome. Horm Metab Res. 2018;50(9):690–5. https://doi.org/10.1055/a-0649-8010.

    Article  CAS  PubMed  Google Scholar 

  94. Devin JK, Blevins LS Jr, Verity DK, Chen Q, Bloodworth JR Jr, Covington J, et al. Markedly impaired fibrinolytic balance contributes to cardiovascular risk in adults with growth hormone deficiency. J Clin Endocrinol Metab. 2007;92(9):3633–9. https://doi.org/10.1210/jc.2007-0609.

    Article  CAS  PubMed  Google Scholar 

  95. Leonsson M, Hulthe J, Oscarsson J, Johannsson G, Wendelhag I, Wikstrand J, et al. Intima-media thickness in cardiovascularly asymptomatic hypopituitary adults with growth hormone deficiency: relation to body mass index, gender, and other cardiovascular risk factors. Clin Endocrinol (Oxf). 2002;57(6):751–9. https://doi.org/10.1046/j.1365-2265.2002.01663.x.

    Article  PubMed  Google Scholar 

  96. Pfeifer M, Verhovec R, Zizek B, Prezelj J, Poredos P, Clayton RN. Growth hormone (GH) treatment reverses early atherosclerotic changes in GH-deficient adults. J Clin Endocrinol Metab. 1999;84(2):453–7. https://doi.org/10.1210/jcem.84.2.5456.

    Article  CAS  PubMed  Google Scholar 

  97. Irving RJ, Carson MN, Webb DJ, Walker BR. Peripheral vascular structure and function in men with contrasting GH levels. J Clin Endocrinol Metab. 2002;87(7):3309–14. https://doi.org/10.1210/jcem.87.7.8655.

    Article  CAS  PubMed  Google Scholar 

  98. Biscotto IP, Costa Hong VA, Batista RL, Mendonca BB, Arnhold IJP, Bortolotto LA, et al. Vasculometabolic effects in patients with congenital growth hormone deficiency with and without GH replacement therapy during adulthood. Pituitary. 2021;24(2):216–28. https://doi.org/10.1007/s11102-020-01099-z.

    Article  CAS  PubMed  Google Scholar 

  99. Singh H, Afroze M, Shafi N, Bhat JA, Kawa IA, Laway BA, et al. Prevalence of coronary calcium deposits in Sheehan’s syndrome patients on long term replacement treatment. Pituitary. 2022;25(1):92–9. https://doi.org/10.1007/s11102-021-01174-z.

    Article  CAS  PubMed  Google Scholar 

  100. Mancini A, Bruno C, Vergani E, Guidi F, Angelini F, Meucci E, et al. Evaluation of oxidative stress effects on different macromolecules in adult growth hormone deficiency. PLoS One. 2020;15(7): e0236357. https://doi.org/10.1371/journal.pone.0236357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Böger RH, Skamira C, Bode-Böger SM, Brabant G, Von zur Muhlen A, Frolich JC. Nitric oxide may mediate the hemodynamic effects of recombinant growth hormone in patients with acquired growth hormone deficiency. A double-blind, placebo-controlled study. J Clin Invest. 1996;98(12):2706–13. https://doi.org/10.1172/JCI119095.

  102. Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339(1–2):1–9. https://doi.org/10.1016/j.cccn.2003.09.010.

    Article  CAS  PubMed  Google Scholar 

  103. Laway BA, Rasool A, Baba MS, Misgar RA, Bashir MI, Wani AI, et al. High prevalence of coronary artery calcification and increased risk for coronary artery disease in patients with Sheehan syndrome-A case-control study. Clin Endocrinol (Oxf). 2023;98(3):375–82. https://doi.org/10.1111/cen.14871.

    Article  CAS  PubMed  Google Scholar 

  104. A Mancini F Guidi C Bruno F Angelini E Vergani P Lanza et al 2021 Can plasma antioxidants prevent DNA damage in oxidative stress condition induced by growth hormone deficiency? A pilot study PLoS One. 16 4 e0248971 10.1371

  105. Berglund A, Gravholt CH, Olsen MS, Christiansen JS, Stochholm K. Growth hormone replacement does not increase mortality in patients with childhood-onset growth hormone deficiency. Clin Endocrinol (Oxf). 2015;83(5):677–83. [PubMed]. https://doi.org/10.1111/cen.12848.

  106. Stochholm K, Gravholt CH, Laursen T, Laurberg P, Andersen M, Kristensen L, et al. Mortality and GH deficiency: a nationwide study. Eur J Endocrinol. 2007;157(1):9–18. https://doi.org/10.1530/EJE-07-0013.

    Article  CAS  PubMed  Google Scholar 

  107. Stochholm K, Juul S, Christiansen JS, Gravholt CH. Mortality and socioeconomic status in adults with childhood onset GH deficiency (GHD) is highly dependent on the primary cause of GHD. Eur J Endocrinol. 2012;167(5):663–70. https://doi.org/10.1530/EJE-11-1084.

    Article  CAS  PubMed  Google Scholar 

  108. Johannsson G, Touraine P, Feldt-Rasmussen U, Pico A, Vila G, Mattsson AF, et al. Long-term Safety of Growth Hormone in Adults With Growth Hormone Deficiency: Overview of 15 809 GH-Treated Patients. J Clin Endocrinol Metab. 2022;107(7):1906–19. https://doi.org/10.1210/clinem/dgac199.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Carel JC, Ecosse E, Landier F, Meguellati-Hakkas D, Kaguelidou F, Rey G, et al. Long-term mortality after recombinant growth hormone treatment for isolated growth hormone deficiency or childhood short stature: preliminary report of the French SAGhE study. J Clin Endocrinol Metab. 2012;97(2):416–25. https://doi.org/10.1210/jc.2011-1995.

    Article  CAS  PubMed  Google Scholar 

  110. Attanasio AF, Bates PC, Ho KK, Webb SM, Ross RJ, Strasburger CJ, et al. Human growth hormone replacement in adult hypopituitary patients: long-term effects on body composition and lipid status–3-year results from the HypoCCS Database. J Clin Endocrinol Metab. 2002;87(4):1600–6. https://doi.org/10.1210/jcem.87.4.8429.

    Article  CAS  PubMed  Google Scholar 

  111. Hazem A, Elamin MB, Bancos I, Malaga G, Prutsky G, Domecq JP, et al. Body composition and quality of life in adults treated with GH therapy: a systematic review and meta-analysis. Eur J Endocrinol. 2012;166(1):13–20. https://doi.org/10.1530/EJE-11-0558.

    Article  CAS  PubMed  Google Scholar 

  112. Abrahamsen B, Nielsen TL, Hangaard J, Gregersen G, Vahl N, Korsholm L, et al. Dose-, IGF-I- and sex-dependent changes in lipid profile and body composition during GH replacement therapy in adult onset GH deficiency. Eur J Endocrinol. 2004;150(5):671–9. https://doi.org/10.1530/eje.0.1500671.

    Article  CAS  PubMed  Google Scholar 

  113. Abrams P, Boquete H, Fideleff H, Feldt-Rasmussen U, Jönsson PJ, Koltowska-Häggström M, et al. GH replacement in hypopituitarism improves lipid profile and quality of life independently of changes in obesity variables. Eur J Endocrinol. 2008;159(6):825–32. https://doi.org/10.1530/EJE-08-0448.

    Article  CAS  PubMed  Google Scholar 

  114. Christ ER, Chowienczyk PJ, Sönksen PH, Russel-Jones DL. Growth hormone replacement therapy in adults with growth hormone deficiency improves vascular reactivity. Clinical endocrinology. 1999;51(1):21–5. https://doi.org/10.1046/j.1365-2265.1999.00805.x.

    Article  CAS  PubMed  Google Scholar 

  115. Christ ER, Cummings MH, Lumb PJ, Crook MA, Sönksen PH, Russell-Jones DL. Growth hormone (GH) replacement therapy reduces serum sialic acid concentrations in adults with GH-deficiency: a double-blind placebo-controlled study. Clinical endocrinology. 1999;51(2):173–9. https://doi.org/10.1046/j.1365-2265.1999.00751.x.

    Article  CAS  PubMed  Google Scholar 

  116. Johansson JO, Landin K, Johannsson G, Tengborn L, Bengtsson BÅ. Long-term treatment with growth hormone decreases plasminogen activator inhibitor-1 and tissue plasminogen activator in growth hormone-deficient adults. Thrombosis and Haemostasis. 1996;76(09):422–8.

    CAS  PubMed  Google Scholar 

  117. Gibney J, Wallace JD, Spinks T, Schnorr L, Ranicar A, Cuneo RC, et al. The effects of 10 years of recombinant human growth hormone (GH) in adult GH-deficient patients. J Clin Endocrinol Metab. 1999;84(8):2596–602. https://doi.org/10.1210/jcem.84.8.5916.

    Article  CAS  PubMed  Google Scholar 

  118. Rosa IN, de Sousa Munhoz Soares AA, Rodrigues MP, Naves LA. Classic cardiovascular risk factors improve in very elderly hypopituitary patients treated on standard hormone replacement in long term follow- up. Clin Diabetes Endocrinol. 2021;7(1):6. https://doi.org/10.1186/s40842-021-00119-6.

  119. Gasco V, Roncoroni L, Zavattaro M, Bona C, Berton A, Ghigo E, Maccario M, Grottoli S. Untreated adult GH deficiency is not associated with the development of metabolic risk factors: a long-term observational study. J Endocrinol Invest. 2020;43(2):197–207. https://doi.org/10.1007/s40618-019-01100-y.

    Article  CAS  PubMed  Google Scholar 

  120. Melmed S, Is GH. Replacement for Adult GH Deficiency Safe? J Clin Endocrinol Metab. 2022;107(10):e4238–9. https://doi.org/10.1210/clinem/dgac307.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work did not receive any type of funding

Author information

Authors and Affiliations

Authors

Contributions

HMG performed the literature review and wrote this review.

Corresponding author

Correspondence to Heraldo M Garmes.

Ethics declarations

Ethical approval

N/A. No ethical approval is required for this literature review.

Informed consent

N/A. No informed consent is required for this manuscript.

Conflict of interest

HMG has served as consultant of Pfizer and Novo Nordisc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garmes, H.M. Special features on insulin resistance, metabolic syndrome and vascular complications in hypopituitary patients. Rev Endocr Metab Disord (2024). https://doi.org/10.1007/s11154-023-09872-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11154-023-09872-8

Keywords

Navigation