Skip to main content
Log in

Role of epigenomic mechanisms in the onset and management of insulin resistance

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The prevalence of insulin resistance (IR) is increasing rapidly worldwide and it is a relevant health problem because it is associated with several diseases, such as type 2 diabetes, cardiovascular disorders and cancer. Understanding the mechanisms involved in IR onset and progression will open new avenues for identifying biomarkers for preventing and treating IR and its co-diseases. Epigenetic mechanisms such as DNA methylation are important factors that mediate the environmental effect in the genome by regulating gene expression and consequently its effect on the phenotype and the development of disease. Taking into account that IR results from a complex interplay between genes and the environment and that epigenetic marks are reversible, disentangling the relationship between IR and epigenetics will provide new tools to improve the management and prevention of IR. Here, we review the current scientific evidence regarding the association between IR and epigenetic markers as mechanisms involved in IR development and potential management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5mC:

5-methylcytosine

ADAM2:

ADAM metallopeptidase domain 2

ADCY9:

adenylate cyclase 9

BS:

bisulphite sequencing

C:

cytosine

CERs:

ceramides

COL11A2:

collagen type XI alpha 2 chain

COL5A1:

collagen type V alpha 1 chain

COL9A1:

collagen, type IX, alpha 1

DAGs:

diacylglycerols

DMCpG:

differentially methylated CpG

DNA:

deoxyribonucleic acid

DNMTs:

DNA methyltransferases

ER:

endoplasmic reticulum

FAM123C:

family with sequence similarity 123C

FHL2:

four and a half LIM domains 2

FTO:

FTO alpha-ketoglutarate dependent dioxygenase

GAB1:

GRB2 associated binding protein 1

GATA4:

GATA binding protein 4

GDM:

glucose disposal metabolizable glucose

GDR:

rate of whole-body glucose disposal

GLUT-4:

glucose transporter type 4

GO:

gene ontology

HDACM:

histone deacetylase

HHEX:

hematopoietically expressed homeobox

HOMA-IR:

Homeostatic Model Assessment for Insulin Resistance

IGF2BP1:

insulin like growth factor 2 mRNA binding protein 1

IGF2BP2:

insulin like growth factor 2 mRNA binding protein 2

IL:

interleukins

IR:

insulin resistance

IRS:

insulin receptor substrate

IS:

insulin-sensitive

JAZF1:

JAZF zinc finger 1

KCNJ11:

potassium voltage-gated channel subfamily J member 11

KCNQ1:

potassium voltage-gated channel subfamily Q member

KLF14:

Kruppel like factor 14

lncRNA:

long non-coding RNA

MAM:

membranes associated with mitochondria

MBD:

methyl-CpG-binding domain

miRNA:

microRNA

MS:

metabolic syndrome

MUC4:

mucin 4, cell surface associated

NAFLD:

non-alcoholic fatty liver disease

ncRNAs:

non-coding RNA

NOTCH2:

notch receptor 2

PCOD:

polycystic ovarian disease

PCR:

polymerase chain reaction

PFKFB3:

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PI3K:

Phosphoinositide 3-kinase

PTMs:

post-translational histone modifications

PTPRJ:

protein tyrosine phosphatase receptor type J

SAT:

subcutaneous adipose tissue

SIRTs:

Sirtuins

T2D:

type 2 diabetes mellitus

TBX5:

T-box 5

TCF7L2:

transcription factor 7 like 2

TET1:

tet methylcytosine dioxygenase 1

THADA:

THADA armadillo repeat containing

TNF-α:

tumour necrosis factor alfa

VAT:

visceral adipose tissue

WFS1:

wolframin ER transmembrane glycoprotein

ZNF518B:

zinc finger protein 518B

ZNF714:

zinc finger protein 714

References

  1. Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol. 2006;68:123–58. https://doi.org/10.1146/annurev.physiol.68.040104.124723.

    Article  CAS  PubMed  Google Scholar 

  2. Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32(9):2052–9. https://doi.org/10.1161/ATVBAHA.111.241919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sookoian S, Pirola CJ. Epigenetics of insulin resistance: an emerging field in translational medicine. Curr Diab Rep. 2013;13(2):229–37. https://doi.org/10.1007/s11892-012-0361-9.

    Article  CAS  PubMed  Google Scholar 

  4. Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta. 2014;1842(3):446–62. https://doi.org/10.1016/j.bbadis.2013.05.017.

    Article  CAS  PubMed  Google Scholar 

  5. Ronn T, Ling C. DNA methylation as a diagnostic and therapeutic target in the battle against type 2 diabetes. Epigenomics. 2015;7(3):451–60. https://doi.org/10.2217/epi.15.7.

    Article  CAS  PubMed  Google Scholar 

  6. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12–22. https://doi.org/10.1172/JCI77812.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rosen ED. Epigenomic and transcriptional control of insulin resistance. J Intern Med. 2016;280(5):443–56. https://doi.org/10.1111/joim.12547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014;5:5592. https://doi.org/10.1038/ncomms6592.

    Article  CAS  PubMed  Google Scholar 

  9. Devaskar SU, Thamotharan M. Metabolic programming in the pathogenesis of insulin resistance. Rev Endocr Metab Disord. 2007;8(2):105–13. https://doi.org/10.1007/s11154-007-9050-4.

    Article  CAS  PubMed  Google Scholar 

  10. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473–81. https://doi.org/10.1172/JCI10842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science. 2013;339(6116):172–7. https://doi.org/10.1126/science.1230721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6(1). doi:https://doi.org/10.1101/cshperspect.a009191.

  13. Zick Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE. 2005;2005(268):pe4. https://doi.org/10.1126/stke.2682005pe4.

    Article  PubMed  Google Scholar 

  14. Lu B, Gu P, Xu Y, Ye X, Wang Y, Du H, et al. Overexpression of protein tyrosine phosphatase 1B impairs glucose-stimulated insulin secretion in INS-1 cells. Minerva Endocrinol. 2016;41(1):1–9.

    PubMed  Google Scholar 

  15. Bijur GN, Jope RS. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem. 2003;87(6):1427–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409(6821):729–33. https://doi.org/10.1038/35055575.

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez-Franquesa A, Patti ME. Insulin resistance and mitochondrial dysfunction. Adv Exp Med Biol. 2017;982:465–520. https://doi.org/10.1007/978-3-319-55330-6_25.

    Article  CAS  PubMed  Google Scholar 

  18. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2. https://doi.org/10.1126/science.1082889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turner N, Kowalski GM, Leslie SJ, Risis S, Yang C, Lee-Young RS, et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia. 2013;56(7):1638–48. https://doi.org/10.1007/s00125-013-2913-1.

    Article  CAS  PubMed  Google Scholar 

  20. Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4(1):R1–R15. https://doi.org/10.1530/EC-14-0092.

    Article  CAS  PubMed  Google Scholar 

  21. Turner N, Heilbronn LK. Is mitochondrial dysfunction a cause of insulin resistance? Trends Endocrinol Metab. 2008;19(9):324–30. https://doi.org/10.1016/j.tem.2008.08.001.

    Article  CAS  PubMed  Google Scholar 

  22. Landar A, Zmijewski JW, Dickinson DA, Le Goffe C, Johnson MS, Milne GL, et al. Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species. Am J Physiol Heart Circ Physiol. 2006;290(5):H1777–87. https://doi.org/10.1152/ajpheart.01087.2005.

    Article  CAS  PubMed  Google Scholar 

  23. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401–14. https://doi.org/10.1161/CIRCRESAHA.107.165472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Flamment M, Hajduch E, Ferre P, Foufelle F. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab. 2012;23(8):381–90. https://doi.org/10.1016/j.tem.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  25. Salvado L, Palomer X, Barroso E, Vazquez-Carrera M. Targeting endoplasmic reticulum stress in insulin resistance. Trends Endocrinol Metab. 2015;26(8):438–48. https://doi.org/10.1016/j.tem.2015.05.007.

    Article  CAS  PubMed  Google Scholar 

  26. Rieusset J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: distinct or interrelated roles? Diabetes Metab. 2015;41(5):358–68. https://doi.org/10.1016/j.diabet.2015.02.006.

    Article  CAS  PubMed  Google Scholar 

  27. Krssak M, Roden M. The role of lipid accumulation in liver and muscle for insulin resistance and type 2 diabetes mellitus in humans. Rev Endocr Metab Disord. 2004;5(2):127–34. https://doi.org/10.1023/B:REMD.0000021434.98627.dc.

    Article  CAS  PubMed  Google Scholar 

  28. Tubbs E, Chanon S, Robert M, Bendridi N, Bidaux G, Chauvin MA, et al. Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans. Diabetes. 2018;67(4):636–50. https://doi.org/10.2337/db17-0316.

    Article  CAS  PubMed  Google Scholar 

  29. Tubbs E, Rieusset J. Metabolic signaling functions of ER-mitochondria contact sites: role in metabolic diseases. J Mol Endocrinol. 2017;58(2):R87–R106. https://doi.org/10.1530/JME-16-0189.

    Article  CAS  PubMed  Google Scholar 

  30. Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23(1):87. https://doi.org/10.1186/s12929-016-0303-y.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. https://doi.org/10.1172/JCI19451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801. https://doi.org/10.1172/JCI29069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szulinska M, Musialik K, Suliburska J, Lis I, Bogdanski P. The effect of L-arginine supplementation on serum resistin concentration in insulin resistance in animal models. Eur Rev Med Pharmacol Sci. 2014;18(4):575–80.

    CAS  PubMed  Google Scholar 

  34. Lukic L, Lalic NM, Rajkovic N, Jotic A, Lalic K, Milicic T, et al. Hypertension in obese type 2 diabetes patients is associated with increases in insulin resistance and IL-6 cytokine levels: potential targets for an efficient preventive intervention. Int J Environ Res Public Health. 2014;11(4):3586–98. https://doi.org/10.3390/ijerph110403586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Su D, Coudriet GM, Hyun Kim D, Lu Y, Perdomo G, Qu S, et al. FoxO1 links insulin resistance to proinflammatory cytokine IL-1beta production in macrophages. Diabetes. 2009;58(11):2624–33. https://doi.org/10.2337/db09-0232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Day SE, Coletta RL, Kim JY, Garcia LA, Campbell LE, Benjamin TR, et al. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood. Epigenetics. 2017;12(4):254–63. https://doi.org/10.1080/15592294.2017.1281501.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA, Project M. DNA methylation signatures at endoplasmic reticulum stress genes are associated with adiposity and insulin resistance. Mol Genet Metab. 2018;123(1):50–8. https://doi.org/10.1016/j.ymgme.2017.11.011.

    Article  CAS  PubMed  Google Scholar 

  38. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Moreno-Aliaga MJ, Martinez JA. Project M. Endoplasmic reticulum stress epigenetics is related to adiposity, dyslipidemia, and insulin resistance. Adipocyte. 2018;7(2):137–42. https://doi.org/10.1080/21623945.2018.1447731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci. 2013;14(9):17643–63. https://doi.org/10.3390/ijms140917643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Waddington CH. Preliminary notes on the development of the wings in Normal and mutant strains of drosophila. Proc Natl Acad Sci U S A. 1939;25(7):299–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Crujeiras AB, Diaz-Lagares A. DNA methylation in obesity and associated diseases. Epigenetic Biomarkers and Diagnostics; 2016. p. 313–29. https://doi.org/10.1016/B978-0-12-801899-6.00016-4.

  42. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–63. https://doi.org/10.1038/nature02625.

    Article  CAS  PubMed  Google Scholar 

  43. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3. https://doi.org/10.1101/gad.1787609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–32. https://doi.org/10.1038/nature05918.

    Article  CAS  PubMed  Google Scholar 

  45. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145–56. https://doi.org/10.1161/CIRCULATIONAHA.110.956839.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord. 2007;8(2):173–82. https://doi.org/10.1007/s11154-007-9042-4.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lappalainen T, Greally JM. Associating cellular epigenetic models with human phenotypes. Nat Rev Genet. 2017;18(7):441–51. https://doi.org/10.1038/nrg.2017.32.

    Article  CAS  PubMed  Google Scholar 

  48. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21(4):214–22. https://doi.org/10.1016/j.tem.2009.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68. https://doi.org/10.1038/nbt.1685.

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17(3):330–9. https://doi.org/10.1038/nm.2305.

    Article  CAS  PubMed  Google Scholar 

  51. de Mello VD, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamaki J, Uusitupa M. DNA methylation in obesity and type 2 diabetes. Ann Med. 2014;46(3):103–13. https://doi.org/10.3109/07853890.2013.857259.

    Article  CAS  PubMed  Google Scholar 

  52. Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics. 2015;7(2):247–65. https://doi.org/10.2217/epi.14.80.

    Article  CAS  PubMed  Google Scholar 

  53. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92. https://doi.org/10.1038/nrg3230.

    Article  CAS  PubMed  Google Scholar 

  54. Wilson GA, Dhami P, Feber A, Cortazar D, Suzuki Y, Schulz R, et al. Resources for methylome analysis suitable for gene knockout studies of potential epigenome modifiers. Gigascience. 2012;1(1):3. https://doi.org/10.1186/2047-217X-1-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. https://doi.org/10.1101/gad.947102.

    Article  CAS  PubMed  Google Scholar 

  56. Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med. 2017;49(4):e322. https://doi.org/10.1038/emm.2017.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation. Epigenetics Chromatin. 2016;9(26):26. https://doi.org/10.1186/s13072-016-0075-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20. https://doi.org/10.1038/nrg3354.

    Article  CAS  PubMed  Google Scholar 

  59. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20(24):3139–55. https://doi.org/10.1038/sj.onc.1204341.

    Article  CAS  PubMed  Google Scholar 

  60. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    CAS  PubMed  Google Scholar 

  61. Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T. Whole genome DNA methylation: beyond genes silencing. Oncotarget. 2017;8(3):5629–37. https://doi.org/10.18632/oncotarget.13562.

    Article  PubMed  Google Scholar 

  62. Lai SR, Phipps SM, Liu L, Andrews LG, Tollefsbol TO. Epigenetic control of telomerase and modes of telomere maintenance in aging and abnormal systems. Front Biosci. 2005;10:1779–96.

    CAS  PubMed  Google Scholar 

  63. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90. https://doi.org/10.1016/j.ccr.2014.07.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lisanti S, Omar WA, Tomaszewski B, De Prins S, Jacobs G, Koppen G, et al. Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One. 2013;8(11):e79044. https://doi.org/10.1371/journal.pone.0079044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet. 2010;11(3):191–203. https://doi.org/10.1038/nrg2732.

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Tollefsbol TO. DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol. 2011;791:11–21. https://doi.org/10.1007/978-1-61779-316-5_2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89(5):1827–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33(18):5868–77. https://doi.org/10.1093/nar/gki901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22. https://doi.org/10.1038/nature08514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baylin SB, Jones PA. Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol. 2016;8(9). doi:https://doi.org/10.1101/cshperspect.a019505.

  71. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95. https://doi.org/10.1016/j.ygeno.2011.07.007.

    Article  CAS  PubMed  Google Scholar 

  72. Roessler J, Ammerpohl O, Gutwein J, Hasemeier B, Anwar SL, Kreipe H, et al. Quantitative cross-validation and content analysis of the 450k DNA methylation array from Illumina. Inc BMC Res Notes. 2012;5:210. https://doi.org/10.1186/1756-0500-5-210.

    Article  CAS  PubMed  Google Scholar 

  73. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. Evaluation of the Infinium methylation 450K technology. Epigenomics. 2011;3(6):771–84. https://doi.org/10.2217/epi.11.105.

    Article  CAS  PubMed  Google Scholar 

  74. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17(1):208. https://doi.org/10.1186/s13059-016-1066-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Onder O, Sidoli S, Carroll M, Garcia BA. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics. 2015;12(5):499–517. https://doi.org/10.1586/14789450.2015.1084231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eom GH, Kook H. Posttranslational modifications of histone deacetylases: implications for cardiovascular diseases. Pharmacol Ther. 2014;143(2):168–80. https://doi.org/10.1016/j.pharmthera.2014.02.012.

    Article  CAS  PubMed  Google Scholar 

  77. Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol. 2015;10(1):95–108. https://doi.org/10.1021/cb500846u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim MY, Bae JS, Kim TH, Park JM, Ahn YH. Role of transcription factor modifications in the pathogenesis of insulin resistance. Exp Diabetes Res. 2012;2012:716425–16. https://doi.org/10.1155/2012/716425.

    Article  CAS  PubMed  Google Scholar 

  79. Meller VH, Joshi SS, Deshpande N. Modulation of chromatin by noncoding RNA. Annu Rev Genet. 2015;49:673–95. https://doi.org/10.1146/annurev-genet-112414-055205.

    Article  CAS  PubMed  Google Scholar 

  80. McMahon M, Samali A, Chevet E. Regulation of the unfolded protein response by noncoding RNA. Am J Physiol Cell Physiol. 2017;313(3):C243–C54. https://doi.org/10.1152/ajpcell.00293.2016.

    Article  PubMed  Google Scholar 

  81. Acharya S, Hartmann M, Erhardt S. Chromatin-associated noncoding RNAs in development and inheritance. Wiley Interdiscip Rev RNA. 2017;8(6). doi:https://doi.org/10.1002/wrna.1435.

  82. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220(2):126–39. https://doi.org/10.1002/path.2638.

    Article  CAS  PubMed  Google Scholar 

  83. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in Cancer. Curr Genomics. 2010;11(7):537–61. https://doi.org/10.2174/138920210793175895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fang Y, Fullwood MJ. Roles, functions, and mechanisms of Long non-coding RNAs in Cancer. Genomics Proteomics Bioinformatics. 2016;14(1):42–54. https://doi.org/10.1016/j.gpb.2015.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ruan X, Li P, Cao H. Regulation of systemic energy metabolism by a human-specific long noncoding RNA In Vivo. Diabetes. 2018;67(Supplement 1):256-LB. https://doi.org/10.2337/db18-256-LB.

    Article  Google Scholar 

  86. Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 2017;474(24):4219–51. https://doi.org/10.1042/BCJ20170079.

    Article  CAS  PubMed  Google Scholar 

  87. Diaz-Lagares A, Crujeiras AB, Lopez-Serra P, Soler M, Setien F, Goyal A, et al. Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci U S A. 2016;113(47):E7535–E44. https://doi.org/10.1073/pnas.1608585113

  88. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711. https://doi.org/10.1016/j.devcel.2010.10.005.

    Article  CAS  PubMed  Google Scholar 

  89. Hwang JY, Aromolaran KA, Zukin RS. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci. 2017;18(6):347–61. https://doi.org/10.1038/nrn.2017.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ballestar E. Epigenetic alterations in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2011;7(5):263–71. https://doi.org/10.1038/nrrheum.2011.16.

    Article  CAS  PubMed  Google Scholar 

  91. Campion J, Milagro F, Martinez JA. Epigenetics and obesity. Prog Mol Biol Transl Sci. 2010;94:291–347. https://doi.org/10.1016/B978-0-12-375003-7.00011-X.

    Article  CAS  PubMed  Google Scholar 

  92. Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21(2):371–83. https://doi.org/10.1093/hmg/ddr472.

    Article  CAS  PubMed  Google Scholar 

  93. DelCurto H, Wu G, Satterfield MC. Nutrition and reproduction: links to epigenetics and metabolic syndrome in offspring. Curr Opin Clin Nutr Metab Care. 2013;16(4):385–91. https://doi.org/10.1097/MCO.0b013e328361f96d.

    Article  CAS  PubMed  Google Scholar 

  94. Tiwari S. Recent advancement in methodology for understanding epigenetic modifications. J Clin Epidemiol. 2017;03(03). https://doi.org/10.21767/2472-1158.100055.

  95. Ushijima TT, T.O. Epigenetic Biomarkers: New Findings, Perspectives, and Future Directions in Diagnostics. In: Garcia-Gimenez JL, editor. Epigenetic Biomarkers and Diagnostics. 2015. p. 1–18.

  96. Martin-Gronert MS, Ozanne SE. Mechanisms underlying the developmental origins of disease. Rev Endocr Metab Disord. 2012;13(2):85–92. https://doi.org/10.1007/s11154-012-9210-z.

    Article  PubMed  Google Scholar 

  97. Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, et al. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene. 2004;23(54):8841–6. https://doi.org/10.1038/sj.onc.1208137.

    Article  CAS  PubMed  Google Scholar 

  98. Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A, et al. Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit. 2010;16(3):CR149–55.

    CAS  PubMed  Google Scholar 

  99. Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One. 2010;5(3):e9692. https://doi.org/10.1371/journal.pone.0009692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu CC, Ou TT, Wu CC, Li RN, Lin YC, Lin CH, et al. Global DNA methylation, DNMT1, and MBD2 in patients with systemic lupus erythematosus. Lupus. 2011;20(2):131–6. https://doi.org/10.1177/0961203310381517.

    Article  CAS  PubMed  Google Scholar 

  101. Bacos K, Gillberg L, Volkov P, Olsson AH, Hansen T, Pedersen O, et al. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun. 2016;7:11089. https://doi.org/10.1038/ncomms11089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63(9):2962–76. https://doi.org/10.2337/db13-1459.

    Article  PubMed  Google Scholar 

  103. Ronn T, Volkov P, Davegardh C, Dayeh T, Hall E, Olsson AH, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6):e1003572. https://doi.org/10.1371/journal.pgen.1003572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nigi L, Grieco GE, Ventriglia G, Brusco N, Mancarella F, Formichi C, et al. MicroRNAs as regulators of insulin signaling: research updates and potential therapeutic perspectives in Type 2 diabetes. Int J Mol Sci. 2018;19(12). https://doi.org/10.3390/ijms19123705.

  105. Castano C, Kalko S, Novials A, Parrizas M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci U S A. 2018;115(48):12158–63. https://doi.org/10.1073/pnas.1808855115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Hum Genomics. 2018;12(1):41. https://doi.org/10.1186/s40246-018-0173-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li M, Guo Y, Wang XJ, Duan BH, Li L. HOTAIR participates in hepatic insulin resistance via regulating SIRT1. Eur Rev Med Pharmacol Sci. 2018;22(22):7883–90. https://doi.org/10.26355/eurrev_201811_16414.

    Article  CAS  PubMed  Google Scholar 

  108. Zhu X, Li H, Wu Y, Zhou J, Yang G, Wang W. lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int J Mol Med. 2019;43(1):345–57. https://doi.org/10.3892/ijmm.2018.3975.

    Article  CAS  PubMed  Google Scholar 

  109. Yan C, Li J, Feng S, Li Y, Tan L. Long noncoding RNA Gomafu upregulates Foxo1 expression to promote hepatic insulin resistance by sponging miR-139-5p. Cell Death Dis. 2018;9(3):289. https://doi.org/10.1038/s41419-018-0321-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Geng T, Liu Y, Xu Y, Jiang Y, Zhang N, Wang Z, et al. H19 lncRNA promotes skeletal muscle insulin sensitivity in part by targeting AMPK. Diabetes. 2018;67(11):2183–98. https://doi.org/10.2337/db18-0370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao XY, Li S, DelProposto JL, Liu T, Mi L, Porsche C, et al. The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health. Mol Metab. 2018;14:60–70. https://doi.org/10.1016/j.molmet.2018.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Carter S, Miard S, Boivin L, Salle-Lefort S, Picard F. Loss of Malat1 does not modify age- or diet-induced adipose tissue accretion and insulin resistance in mice. PLoS One. 2018;13(5):e0196603. https://doi.org/10.1371/journal.pone.0196603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheng J, Song J, He X, Zhang M, Hu S, Zhang S, et al. Loss of Mbd2 protects mice against high-fat diet-induced obesity and insulin resistance by regulating the homeostasis of energy storage and expenditure. Diabetes. 2016;65(11):3384–95. https://doi.org/10.2337/db16-0151.

    Article  CAS  PubMed  Google Scholar 

  114. You D, Nilsson E, Tenen DE, Lyubetskaya A, Lo JC, Jiang R, et al. Dnmt3a is an epigenetic mediator of adipose insulin resistance. Elife. 2017;6. https://doi.org/10.7554/eLife.30766.

  115. Carreira MC, Izquierdo AG, Amil M, Casanueva FF, Crujeiras AB. Oxidative stress induced by excess of adiposity is related to a downregulation of hepatic SIRT6 expression in obese individuals. Oxidative Med Cell Longev. 2018;2018:6256052–7. https://doi.org/10.1155/2018/6256052.

    Article  Google Scholar 

  116. Crujeiras AB, Parra D, Goyenechea E, Martinez JA. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Investig. 2008;38(9):672–8. https://doi.org/10.1111/j.1365-2362.2008.01998.x.

    Article  CAS  Google Scholar 

  117. Zhou S, Tang X, Chen HZ. Sirtuins and insulin resistance. Front Endocrinol (Lausanne). 2018;9:748. doi:https://doi.org/10.3389/fendo.2018.00748.

  118. van Dijk SJ, Peters TJ, Buckley M, Zhou J, Jones PA, Gibson RA, et al. DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int J Obes. 2018;42(1):28–35. https://doi.org/10.1038/ijo.2017.228.

    Article  CAS  Google Scholar 

  119. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am J Physiol Endocrinol Metab. 1979;237(3):E214.

  120. Matthews DR, Hosker JP, Rudenski AD, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

  121. Crujeiras AB, Diaz-Lagares A, Moreno-Navarrete JM, Sandoval J, Hervas D, Gomez A, et al. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Transl Res. 2016;178:13–24 e5. https://doi.org/10.1016/j.trsl.2016.07.002.

    Article  CAS  PubMed  Google Scholar 

  122. Arner P, Sahlqvist AS, Sinha I, Xu H, Yao X, Waterworth D, et al. The epigenetic signature of systemic insulin resistance in obese women. Diabetologia. 2016;59(11):2393–405. https://doi.org/10.1007/s00125-016-4074-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015;3(7):526–34. https://doi.org/10.1016/S2213-8587(15)00127-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zheng LD, Linarelli LE, Liu L, Wall SS, Greenawald MH, Seidel RW, et al. Insulin resistance is associated with epigenetic and genetic regulation of mitochondrial DNA in obese humans. Clin Epigenetics. 2015;7:60. https://doi.org/10.1186/s13148-015-0093-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, et al. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics. 2011;6(3):293–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang FF, Morabia A, Carroll J, Gonzalez K, Fulda K, Kaur M, et al. Dietary patterns are associated with levels of global genomic DNA methylation in a cancer-free population. J Nutr. 2011;141(6):1165–71. https://doi.org/10.3945/jn.110.134536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang FF, Cardarelli R, Carroll J, Fulda KG, Kaur M, Gonzalez K, et al. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics. 2011;6(5):623–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Crujeiras AB, Campion J, Diaz-Lagares A, Milagro FI, Goyenechea E, Abete I, et al. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept. 2013;186:1–6. https://doi.org/10.1016/j.regpep.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  129. Milagro FI, Gomez-Abellan P, Campion J, Martinez JA, Ordovas JM, Garaulet M. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29(9):1180–94. https://doi.org/10.3109/07420528.2012.719967.

    Article  CAS  PubMed  Google Scholar 

  130. Crujeiras AB, Diaz-Lagares A, Sandoval J, Milagro FI, Navas-Carretero S, Carreira MC, et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients. Sci Rep. 2017;7:41903. https://doi.org/10.1038/srep41903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research of the author’s lab is supported by Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) and grants from the Instituto de Salud Carlos III-ISCIII (PI17/01287, CP17/00088) co-financed by the European Regional Development Fund (FEDER). Ana B Crujeiras is funded by a research contract “Miguel Servet” (CP17/00088) from the ISCIII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana B. Crujeiras.

Ethics declarations

Competing interest disclosure

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- Approximately 30% of individuals in the population will present resistance to insulin and its complications throughout their lifetime.

- Changes in lifestyle have contributed to the incidence of diseases related to IR such as T2D in recent years.

- IR occurs in response to an interaction between genetic and environmental factors, suggesting that it may be subject to epigenetic regulation

- A specific methylation pattern related to insulin sensitivity and T2D was observed in adipose tissue, muscle, and pancreatic islets, as well as blood leukocytes.

- Non-coding RNAs are emerging as relevant players in the onset and management of IR.

- To find non-invasive biomarkers and therapeutic targets for IR management is an urgent necessity and epigenetic mechanisms could provide future strategies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izquierdo, A.G., Crujeiras, A.B. Role of epigenomic mechanisms in the onset and management of insulin resistance. Rev Endocr Metab Disord 20, 89–102 (2019). https://doi.org/10.1007/s11154-019-09485-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09485-0

Keywords

Navigation