Skip to main content

Advertisement

Log in

Fabrication, microstructure evolution, and mechanical properties of Ti(C,N)-HfN-WC-Ni-Mo cermets

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Ti(C,N)-HfN-WC-Ni-Mo cermets were fabricated, and effects of HfN and WC content and sintering temperature on their microstructural evolution and mechanical properties were investigated. These cermets were primarily comprised of Ti(C0.41,N0.5), HfN, WC, TiC, Mo and Ni. At an additive concentration of 30 mol.%, the cermet exhibited the most homogeneous microstructure. The grain size gradually increased with increasing sintering temperature. The defects in the cermet sintered at 1500 ℃ significantly reduced, and the fine grains were homogeneously distributed. The fracture mode in cermets was a combination of transgranular fracture and intergranular fracture. Vickers hardness increased, flexural strength and fracture toughness first increased and then decreased with an increase of HfN and WC content. The cermet sintered at 1500 ℃ exhibited better mechanical properties: Vickers hardness was 22.29 GPa, flexural strength was 1271.58 MPa, and fracture toughness was 7.33 MPa·m1/2. In addition, the toughening mechanism of the Ti(C,N)-HfN-WC cermets mainly involved crack deflection and bridging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Q. Gou, J. Xiong, Z. Guo et al., Influence of NbC additions on microstructure and wear resistance of Ti(C, N)-based cermets bonded by CoCrFeNi high-entropy alloy. Int J Refract Met Hard Mater. 94, 105375–105385 (2021). https://doi.org/10.1016/j.ijrmhm.2020.105375

    Article  CAS  Google Scholar 

  2. J. Song, Gao, R. Ahmad et al., Cutting performances of TiCN-HfC and TiCN-HfC-WC ceramic tools in dry turning hardened AISI H13. Adv. Appl. Ceram. 119, 380–386 (2020). https://doi.org/10.1080/17436753.2020.1765292

    Article  CAS  Google Scholar 

  3. K. Xu, B. Zou, T. Wang et al., An experimental investigation of micro-machinability of aluminum alloy 2024 using Ti(C7N3)-based cermet micro end-mill tools. J Mater Process Tech. 235, 13–27 (2016). https://doi.org/10.1016/j.jmatprotec.2016.04.011

    Article  CAS  Google Scholar 

  4. N. Liu, X. Chao, X. Huang et al., Effects of TiC/TiN addition on the microstructure and mechanical properties of ultra-fine grade Ti(C, N)-Ni cermets. J. Eur. Ceram. Soc. 26, 3861–3870 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.12.010

    Article  CAS  Google Scholar 

  5. N. Lin, Z. Zheng, L. Zhao et al., Influences of ultrafine Ti(C, N) additions on microstructure and properties of micron Ti(C, N)-based cermets. Mater. Chem. Phys. 15, 197–206 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.066

    Article  CAS  Google Scholar 

  6. D. Xie, K. Shang, Z. Yi et al., Submicron Ti(C, N)-based cermets with improved microstructure using high-energy milled and subsequent heat-treated ultrafine Ti(C, N) powders. Ceram. Int. 49, 4064–4073 (2023). https://doi.org/10.1016/j.ceramint.2022.02.026

    Article  CAS  Google Scholar 

  7. B. Zhan, N. Liu, W. Xu et al., Effect of ceramic powder size on microstructure and mechanical properties of Ti(C, N)-based cermets. Adv. Mater. Res. 335, 265–272 (2011). https://doi.org/10.4028/www.scientific.net/AMR.335-336.265

    Article  CAS  Google Scholar 

  8. N. Liu, W.H. Yin, L.W. Zhu, Effect of TiC/TiN powder size on microstructure and properties of Ti(C, N)-based cermets. Mat. Sci. Eng. A. 445, 707–716 (2007). https://doi.org/10.1016/j.msea.2006.10.003

    Article  CAS  Google Scholar 

  9. Z. Shi, D. Zhang, S. Cheng et al., Effect of nitrogen content on microstructures and mechanical properties of Ti(C, N)-based cermets. J. Alloy. Compd. 568, 68–72 (2013). https://doi.org/10.1016/j.jallcom.2013.03.138

    Article  CAS  Google Scholar 

  10. Z. Shi, D. Yin, D. Zhang et al., Characterisation of Ti(C, N)-based cermets with various nitrogen contents studied by EBSD/SEM and TEM. J. Alloy. Compd. 695, 2857–2684 (2017). https://doi.org/10.1016/j.jallcom.2016.11.397

    Article  CAS  Google Scholar 

  11. D. Zheng, High-Entropy-Alloy CoFeNiCr Bonded WC-Based Cemented Carbide Prepared by Spark Plasma Sintering. Metall. Mater. Trans. A 53, 2724–2729 (2022). https://doi.org/10.1007/s11661-022-06701-6

    Article  CAS  Google Scholar 

  12. J. Song, L. Cao, J. Gao et al., Effects of HfN content and metallic additives on the microstructure and mechanical properties of TiC0.7N0.3-based ceramic tool materials. J. Alloy. Compd. 753, 85–92 (2018). https://doi.org/10.1016/j.jallcom.2018.04.213

    Article  CAS  Google Scholar 

  13. A.-S. Namini, Z. Ahmadi, A. Bapaboor et al., Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC. Ceram. Int. 45, 2153–2160 (2019). https://doi.org/10.1016/j.ceramint.2018.10.125

    Article  CAS  Google Scholar 

  14. M. Chen, X. Zhang, X. Zhao et al., Effect of secondary carbides on the core-rim structure evolution of TiC-based cermets. Mater Res Express. 8, 76501–76508 (2021). https://doi.org/10.1088/2053-1591/ac0d92

    Article  CAS  Google Scholar 

  15. S. Li, Q. Yang, W. Xiong et al., Magnetic and mechanical properties of TiC-xTiN-15MC-yNi (MC = Mo2C, WC) cermets. J. Alloy. Compd. 765, 1119–1126 (2018). https://doi.org/10.1016/j.jallcom.2018.06.257

    Article  CAS  Google Scholar 

  16. L. Zhao, N. Lin, X. Han et al., Influence of microstructure evolution on mechanical properties, wear resistance and corrosion resistance of Ti(C, N)-Based cermet tools with various WC additions. Metals Mater. Int. 27, 2773–2781 (2021). https://doi.org/10.1007/s12540-020-00614-y

    Article  CAS  Google Scholar 

  17. J. An, J. Song, G. Liang et al., Effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials. Materials. 10, 461–472 (2017). https://doi.org/10.3390/ma10050461

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. X. Zhang, N. Liu, Microstructure, mechanical properties and thermal shock resistance of nano-TiN modified TiC-based cermets with different binders. Int. J. Refract. Metals Hard Mater. 26, 575–582 (2008). https://doi.org/10.1016/j.ijrmhm.2008.01.008

    Article  CAS  Google Scholar 

  19. L. Xu, N. Lin, L. Zhao et al., Effect of Ni contents on mechanical properties and corrosion behavior of Ti(C, N)-WC-Mo2C-(Ni, Co) cermets. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123253

    Article  Google Scholar 

  20. M. Chen, X. Zhang, X. Xiao et al., Effect of Co and Ni contents on the sintering behavior, microstructure evolution, and mechanical properties of (Ti, M)C-based cermets. JOM 73, 3403–3410 (2021). https://doi.org/10.1007/s11837-021-04842-4

    Article  ADS  CAS  Google Scholar 

  21. Y. Li, N. Liu, X. Zhang et al., Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets. Int. J. Refract. Metals Hard Mater. 26, 190–196 (2008). https://doi.org/10.1016/j.ijrmhm.2007.05.005

    Article  CAS  Google Scholar 

  22. R. Chaim, M. Levin, A. Shlayer et al., Sintering and densification of nanocrystalline ceramic oxide powders: a review. Br. Ceram. Trans. 107, 159–169 (2015). https://doi.org/10.1179/174367508X297812

    Article  CAS  Google Scholar 

  23. Y. Fang, X. Zhao, M. Zhang et al., Properties of Ti(C, N)-based cermets reinforced with ZrO2 whiskers deposited via sulfate flux at high temperatures. Vacuum 191, 110336–110347 (2021). https://doi.org/10.1016/j.vacuum.2021.110336

    Article  ADS  CAS  Google Scholar 

  24. X. Xu, Y. Zheng, H. Liang et al., Influence of sintering parameters on the grain growth and mechanical properties of Ti(C, N)-based cermets prepared via mechanical activation and in-situ carbothermal reduction. Mater. Today Commun. 33, 104667–104674 (2022). https://doi.org/10.1016/j.mtcomm.2022.104667

    Article  CAS  Google Scholar 

  25. J. Gao, J. Song, M. Lv et al., Microstructure and mechanical properties of TiC0.7N0.3-HfC cermet tool materials. Ceram. Int. 44, 17895–17904 (2018). https://doi.org/10.1016/j.ceramint.2018.06.262

    Article  CAS  Google Scholar 

  26. D. Wang, D. He, K. Li et al., Preparation and in-situ strengthening mechanisms of Mo composites with the addition of WC. Mat Sci Eng A. 848, 143478–143486 (2022). https://doi.org/10.1016/j.msea.2022.143478

    Article  CAS  Google Scholar 

  27. Z. Cao, N. Jin, J. Ye et al., A first principles investigation on the solid solution behavior of transition metal elements (W, Mo, Ta, Cr) in Ti(C, N). Int. J. Refract. Metals Hard Mater. 99, 105605–105620 (2021). https://doi.org/10.1016/j.ijrmhm.2021.105605

    Article  CAS  Google Scholar 

  28. D. Dong, W. Yang, H. Xiong et al., Ti(C, N)-based cermets with fine grains and uniformly dispersed binders: effect of the Ni-Co based binders. Ceram. Int. 46, 6300–6310 (2020). https://doi.org/10.1016/j.ceramint.2019.11.102

    Article  CAS  Google Scholar 

  29. B.-Y. Kotur, Crystal chemistry of ternary intermetallic compounds of scandium with transition metals and carbon, silicon or germanium. J. Alloy. Compd. 219, 88–92 (1995). https://doi.org/10.1016/0925-8388(94)05013-9

    Article  CAS  Google Scholar 

  30. H. Zhou, C. Huang, B. Zou et al., Effects of metal phases and carbides on the microstructure and mechanical properties of Ti(C, N)-based cermets cutting tool materials. Mat Sci Eng A. 17, 462–470 (2014). https://doi.org/10.1016/j.msea.2014.09.052

    Article  CAS  Google Scholar 

  31. J. Li, H. Qiu, X. Zhang et al., Effects of (Ti, Mo)C particles on the abrasive wear-corrosion of low alloy martensitic steel. Wear 496, 204288–204298 (2022). https://doi.org/10.1016/j.wear.2022.204288

    Article  CAS  Google Scholar 

  32. J. Lv, Y. Du, Y. Peng et al., Effect of C content on the surface gradient structure of (Ti, Mo)(C, N) and Ti(C, N)-based cermets. J. Mater. Res. Technol. 16, 544–554 (2022). https://doi.org/10.1016/j.jmrt.2021.12.021

    Article  CAS  Google Scholar 

  33. J.-W. Kim, M.-S. Seo, S. Kang, Microstructure and mechanical properties of Ti-based solid-solution cermets. Mat Sci Eng A. 528, 2517–2521 (2011). https://doi.org/10.1016/j.msea.2010.11.076

    Article  CAS  Google Scholar 

  34. A. Li, N. Lin, R. Li et al., Effects of hafnium content on microstructures and properties of newly developed (Ti, Hf)(C, N) ceramics. Ceram. Int. 49, 21471–21478 (2023). https://doi.org/10.1016/j.ceramint.2023.03.278

    Article  CAS  Google Scholar 

  35. G. Zhao, L. Xin, L. Li et al., Cutting force model and damage formation mechanism in milling of 70 wt% Si/Al composite. Chin. J. Aeronaut. (2023). https://doi.org/10.1016/j.cja.2022.07.018

    Article  Google Scholar 

  36. L. Chen, Y. Wang, Y. Li et al., Microstructural evolution, mechanical and thermal properties of TiC-ZrC-Cr3C2 composites. Int. J. Refract. Metals Hard Mater. 80, 188–194 (2019). https://doi.org/10.1016/j.ijrmhm.2019.01.008

    Article  CAS  Google Scholar 

  37. A.-G. Evans, K.-T. Faber, Toughening of ceramics by circumferential microcracking. Am. Ceram. Soc. 64, 394–398 (2010). https://doi.org/10.1111/j.1151-2916.1981.tb09877.x

    Article  Google Scholar 

  38. Z. Zhang, Y. Xu, M. Yi et al., Synthesis and characterization of extremely hard and strong (W, Ti, Ta)C cermet by spark plasma sintering. Int. J. Refract. Metals Hard Mater. 105, 105831–105839 (2022). https://doi.org/10.1016/j.ijrmhm.2022.105831

    Article  CAS  Google Scholar 

  39. P. Sarker, T. Harrington, C. Toher et al., High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980–4989 (2018). https://doi.org/10.1038/s41467-018-07160-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. D. Bregiroux, J. Cedelle, Spark plasma sintering of nanostructured ZnS ceramics: grain growth control and improved hardness. Mat. Sci. Eng. A. 827, 142064–142068 (2021). https://doi.org/10.1016/j.msea.2021.142064

    Article  CAS  Google Scholar 

  41. S. Liu, D. Liu, Effect of hard phase content on the mechanical properties of TiC-316 L stainless steel cermets. Int. J. Refract. Metals Hard Mater. 82, 273–278 (2019). https://doi.org/10.1016/j.ijrmhm.2019.04.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 52205492 and 51875388), Fundamental Research Program of Shanxi Province, China (Grant no. 202103021223121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinpeng Song or Jiaojiao Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Song, J., Gao, J. et al. Fabrication, microstructure evolution, and mechanical properties of Ti(C,N)-HfN-WC-Ni-Mo cermets. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00376-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00376-y

Keywords

Navigation