Skip to main content
Log in

Evolution of Refractory Materials for Rotary Cement Kiln Sintering Zone

  • Published:
Refractories and Industrial Ceramics Aims and scope

Development of refractory materials for the high-temperature zone of the rotary kilns used in the cement industry that is the second-largest user of refractory materials is given in the article. It is shown that the history of refractory materials used in this rotary kiln high-temperature zone commenced with alumina-silicate materials and ended with specially developed periclase-based materials used currently. Advantages and drawbacks of these materials are considered. Basic information is provided about the manufacture of cement for consideration of possible chemical reactions between cement kiln raw material and refractory material components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Outlook for refractory end markets to 2020. [Electronic source]. Access regime: https://roskill.com/news/outlook-for-refractoryend-markets-to-2020.

  2. A. K. Chattopadhyay and A. Dasgupta, “Political & economic challenges facing Indian refractory industry,” Proceedings UNITECR 2015.

  3. European Commission. Reference document on the best available techniques in the cement and lime manufacturing industries. BAT Reference Document (BREF). European IPPC Bureau, Seville, Spain (2001).

  4. Best available techniques for the cement industry. General description of the cement production process. Brussels : CEMBUREAU 1999.

  5. J. Szczerba, J. Piech, and Z. Janik, “Mechanisms of wear of the refractory lining of rotary kilns. Part I. Mechanical and thermal factors,” Ceram. Mater., 1, 17 – 22 (1993). (in Polish).

    Google Scholar 

  6. J. Szczerba, J. Piech, and Z. Janik, “Mechanisms of wear of the refractory lining of rotary kilns. Part II. Chemical factors,” Ceram. Mater., 2, 11 – 15 (1993). (in Polish).

    Google Scholar 

  7. J. Szczerba and J. Piech, “Refractory materials in rotary kilns of cement industry,” Cement-Lime-Gypsum, 1, 22 (1995). (in Polish).

    Google Scholar 

  8. A. Rahman, M. G. Rasul, M. M. K. Khan, and S. Sharma, “Recent development on the uses of alternative fuels in cement manufacturing process,” Fuel, 145, 84 – 89 (2005).

    Article  Google Scholar 

  9. E. Mokrzycki and A. Uliasz-Bocheńczyk, “Alternative fuels for the cement industry,” Applied Energy, 74, 95 – 100 (2003).

    Article  Google Scholar 

  10. B. G. Jenkins and S. B. Mather, “Fuelling the demand for alternatives,” The Cement Environmental Yearbook, 90 – 97 (1997).

  11. J. Pizant and J. C. Gauthier, “Burning alternative fuels in rotary kilns,” World Cement, 9, 64 – 75 (1997).

    Google Scholar 

  12. S. Aramaki and R. Roy, “Revised equilibrium diagram for the system Al2O3–SiO2,” Nature, 184, 631 – 632 (1959).

    Article  Google Scholar 

  13. E. F. Osborn and A. Muan, Phase Equilibrium Diagrams of Oxide Systems, Plate 1, Published by the American Ceramic Society and the Edward Orton, Jr., Ceramic Foundation (1960).

  14. / J. Szczerba, “Aluminosilicate refractories — their quality and resistance to corrosive agents in cement and lime kilns,” Cement-Lime-Gypsum, 2, 64 (1993). (in Polish).

  15. Refractories Handbook; ed. by C. A. Schacht, Marcel Dekker, New York (2004).

  16. Pocket Manual Refractory Materials: Basics Structures- Properties (G. Routschka, editor) Vulkan-Verlag, Essen (2004).

  17. I. Jastrzębska, J. Szczerba, R. Prorok, and E. Śnieżek, “An experimental study on hydration of various magnesia raw materials,” Ceram. Silik., 59, 48 – 58 (2015).

    Google Scholar 

  18. Ceramics Science and Technology. Volume 2. Materials and Properties (R. Riedel and I. W. Chen, editors) Wiley-VCH, Weinheim (2010).

  19. A. M. Alper, R. N. McNally, R. C. Doman, and F. G. Keihn, “Phase equilibria in the system MgO–MgCr2O4,” J. Am. Ceram. Soc., 47, 30 – 33 (1964).

    Article  Google Scholar 

  20. D. J. Bray, “Toxicity of chromium compounds formed in refractories,” Amer. Ceram. Soc. Bull., 64, 1012 – 1016 (1985).

    Google Scholar 

  21. J. Szczerba, “The effect of magnesia-chrome materials reaction with Portland clinker on hexavalent chromium in these materials,” Cement-Lime-Gypsum, 4/5, 79 (1990). (in Polish).

  22. H. H. Mao, M. Selleby, and B. Sundman, “A re-evaluation of the liquid phases in the CaO–Al2O3 and MgO–Al2O3 systems,” CALPHAD 28, 307 – 312 (2004).

    Article  Google Scholar 

  23. G. Liu, N. Li, W. Yan, G. Gao, W. Zhou, and Y. Li, “Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln,” Ceram. Internat., 40, 8149 – 8155 (2014).

    Article  Google Scholar 

  24. J. Szczerba, Z. Pędzich, M. Nikiel, and D. Kapuścińska, “Influence of raw materials morphology on properties of magnesia-spinel refractories,” J. Eur. Ceram. Soc., 27, 1683 – 1689 (2007).

    Article  Google Scholar 

  25. J. Szczerba, “Chemical corrosion of basic refractories by cement kiln materials,” Ceram. Internat., 36, 1877 – 1885 (2010).

    Article  Google Scholar 

  26. J. Szczerba, Z. Pędzich, and M. Nikiel, “Effect of oxide additives on properties of magnesia-spinel refractories,” Proceedings UNITECR 2005.

  27. D. Y. Kitaguchi, M. Ono, Y. Tsuchiya, E. Nakajima, and Y. Kajita, “ New chrome free brick for the burning zone of cement rotary kilns,” Proceedings UNITECR 2011.

  28. D. Chandra, S. Swain, J. N. Tiwari, B. Mishra, and N. Sahoo, “New generation Mg-alumina spinel refractories for cement rotary kiln,” Proceedings UNITECR 2011.

  29. J. Szczerba, “Causes of application changes and development of spinel products for cement kilns,” Refractory Materials, 2, 59 (1997). (in Polish).

    Google Scholar 

  30. J. Szczerba and J. Piech, “Application of magnesia-spinel products in the cement industry,” Cement-Lime-Gypsum, 2, 57 (1995). (in Polish).

    Google Scholar 

  31. R. Grasset-Bourdel, A. Alzina, M. Huger, et al., “Influence of thermal damage occurrence at microstructural scale on the thermomechanical behaviour of magnesia-spinel refractories,” J. Eur. Ceram. Soc., 32, 989 – 999 (2012).

    Article  Google Scholar 

  32. A. Ghosh, R. Sarkar, B. Mukherjee, and S. K. Das, “Effect of spinel content on the properties of magnesia-spinel composite refractory,” J. Eur. Ceram. Soc., 24, 2079 – 2085 (2004).

    Article  Google Scholar 

  33. C. Aksel, P. D. Warren, and F. L. Riley, “Fracture behaviour of magnesia and magnesia–spinel composites before and after thermal shock,” J. Eur. Ceram. Soc., 24, 2407 – 2416 (2004).

    Article  Google Scholar 

  34. C. Aksel, B. Rand, F. L. Riley, and P. D. Warren, “Mechanical properties of magnesia-spinel composites,” J. Eur. Ceram. Soc., 22, 745 – 754 (2002).

    Article  Google Scholar 

  35. C. Aksel, B. Rand, F. L. Riley, and P. D. Warren, “Thermal shock behaviour of magnesia–spinel composites,” J. Eurîð. Ceram. Soc., 24, 2839 – 2845 (2004).

    Article  Google Scholar 

  36. C. Aksel and P. D. Warren, “Thermal shock parameters [R, R‴ and R‴′] of magnesia-spinel composites,” J. Europ. Ceram. Soc., 23, 301 – 308 (2003).

    Article  Google Scholar 

  37. C. Aksel and P. D. Warren, “Work of fracture and fracture surface energy of magnesia-spinel composites,” Compos. Sci. Technol., 63, 1433 – 1440 (2003).

    Article  Google Scholar 

  38. C. Aksel, P. D. Warren, and F. L. Riley, “Magnesia–spinel microcomposites,” J. Eur. Ceram. Soc. 24, 3119 – 3128 (2004).

    Article  Google Scholar 

  39. W. A. Fischer and A. Hoffmann, “Das Zustandsschaubild Eisenoxydul-Aluminiumoxyd,” Arch. Eisenhuettenwes., 27, 343 – 346 (1956).

    Google Scholar 

  40. M. Liu, Y. Li, S. L. Ma, et al., “Effects of atmosphere on the periclase hercynite brick,” Adv. Mater. Res., 476 – 478, 1523 – 1528 (2012).

    Article  Google Scholar 

  41. G. Buchebner, T. Molinaria, and H. Harmuth, “Magnesia-hercynite bricks, an innovative burnt basic refractory,” Proceedings UNITECR 1999.

  42. J. Chen, M. Yan, J. Su, et al., “The kiln coating formation mechanism of MgO–FeAl2O4 brick,” Ceram. Internat., 42, 569 – 575 (2016).

    Article  Google Scholar 

  43. J. Nievoll, Z. Guo, and S. Shi, “Performance of magnesia hercynite bricks in large Chinese cement rotary kilns,” RHI Bulletin, 3, 15 – 17 (2006).

    Google Scholar 

  44. J. E. Contreras, G. A. Castillo, E. A. Rodríguez, et al., “Microstructure and properties of hercynite–magnesia–calcium zirconate refractory mixtures,” Mater. Charact., 54, 354 – 359 (2005).

    Article  Google Scholar 

  45. E. Rodríguez, A. K. Limones, J. E. Contreras, et al., “Effect of hercynite spinel content on the properties of magnesia–calcium zirconate dense refractory composite,” J. Eur. Ceram. Soc., 35, 2631 – 2639 (2015).

    Article  Google Scholar 

  46. X. Ding, H. Zhao, Z. Xiang, et al., “Effect of hercynite content on the properties of magnesia-spinel composite refractories sintered in different atmospheres,” Ceram. Internat., 42, 19067 – 19071 (2016).

    Google Scholar 

  47. J. Szczerba and Z. Pêdzich, “The effect of natural dolomite admixtures on calcium zirconate-periclase materials microstructure evolution,” Ceram. Internat., 36, 535 – 547 (2010).

    Article  Google Scholar 

  48. J. Szczerba, “Modified magnesia refractory materials,” Ceramics, 99 (2007). (in Polish).

  49. S. DeAza, C. Richmond, and J. White, “Compatibility relationships of periclase in the system CaO–MgO–ZrO2–SiO2,” Trans. J. Br. Ceram. Soc., 73, 109 – 116 (1974).

    Google Scholar 

  50. J. Szczerba, M. Szymaszek, E. Śnieżek, et al., “Aluminates influence on evolution of the thermomechanical properties of refractory materials from the CaO–MgO–Al2O3–ZrO2 system,” Proceedings UNITECR 2013.

  51. E. Rodríguez, G-Alan Castillo, J. Contreras, et al., “Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO–CaZrO3 refractory brick for the cement industry,” Ceram. Internat., 38, 6769 – 6775 (2012).

  52. E. A. Rodríguez, G. A. Castillo, T. K. Das, et al., “MgAl2O4 spinel as an effective ceramic bonding in a MgO–CaZrO3 refractory,” J. Eur. Ceram. Soc., 33, 2767 – 2774 (201).

  53. L. Yuan, S. L. Chen, X. F. Chen, et al., “Spinel and lanthanum zirconate composite for cement kiln,” Applied Mechanics and Materials, 66 – 68, 1179 – 1186 (2011).

    Article  Google Scholar 

  54. S. Ghanbarnezhad, A. Nemati, M. Bavand-Vandchali, and R. Naghizadeh, “New development of spinel bonded chrome-free basic brick,” J. Chem. Eng. Mater. Sci., 4, 7 – 12 (2013).

    Article  Google Scholar 

  55. H. Wirsing, H. J. Klischat, and C. Vellmer, “Magnesia bricks containing iron spinel troubleshooters for thermomechanically stressed kilns,” Proceeding UNITECR 2015.

  56. P. Bartha, “The cement rotary kiln and its refractory lining,” Interceram. Refractories Manual, 14 – 17 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Szczerba.

Additional information

Translated from Novye Ogneupory, No.8, pp. 31 – 39, August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szczerba, J., Śnieżek, E. & Antonovič, V. Evolution of Refractory Materials for Rotary Cement Kiln Sintering Zone. Refract Ind Ceram 58, 426–433 (2017). https://doi.org/10.1007/s11148-017-0123-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-017-0123-y

Keywords

Navigation