Skip to main content
Log in

Automatic activation of phonological code during visual word recognition in children: a masked priming study in grades 3 and 5

  • Published:
Reading and Writing Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the development of automatic phonological processes involved in visual word recognition during reading acquisition in French. A visual masked priming lexical decision experiment was carried out with third, fifth graders and adult skilled readers. Three different types of partial overlap between the prime and the target were contrasted: orthographic and phonological overlap (O+P+; ren-RENDRE [give] pronounced /ʀɑ̃/-/ʀɑ̃dʀ/ respectively), orthographic overlap (O+P−; re-RENDRE pronounced /ʀə/-/ʀɑ̃dʀ/ respectively), or without orthographic and phonological overlap with the beginning of the target, namely unrelated (UR; pi-RENDRE pronounced /pi/-/ʀɑ̃dʀ/, respectively). The number of letters was controlled throughout the priming conditions. The results showed an interaction between grade and priming condition in children. In third graders, the results displayed a masked phonological priming effect (the O+P+ condition was compared to the O+P− condition) but not a masked orthographic priming effect (the O+P− condition was compared to the UR condition). On the contrary, in fifth graders, the results showed a masked orthographic priming effect but not a masked phonological priming effect. Adult skilled readers displayed the same pattern as fifth graders. These results are interpreted in the multiple-route model of reading development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note. Examples and durations in brackets are from the study of Ziegler et al. (2014a).

  2. Descriptive terms for strength of evidence corresponding to ranges of p(Hi|D) values (Raftery, 1995): .50 to .75 : weak; .75 to .95: positive; .95 to .99 : strong; >.99: very strong.

References

  • Acha, J., & Perea, M. (2008). The effects of length and transposed-letter similarity in lexical decision: Evidence with beginning, intermediate, and adult readers. British Journal of Psychology, 99, 245–264.

    Article  Google Scholar 

  • Bowey, J. A., & Muller, D. (2005). Phonological recoding and rapid orthographic learning in third-graders’ silent reading: A critical test of the self-teaching hypothesis. Journal of Experimental Child Psychology, 92, 203–219.

    Article  Google Scholar 

  • Carreiras, M., Ferrand, L., Grainger, J., & Perea, M. (2005). Sequential effects of phonological priming in visual word recognition. Psychological Science, 16, 585–589.

    Article  Google Scholar 

  • Carreiras, M., & Perea, M. (2002). Masked priming effects with syllabic neighbors in a lexical decision task. Journal of Experimental Psychology: Human Perception and Performance, 28, 1228–1242.

    Google Scholar 

  • Castles, A., Davis, C., Cavalot, P., & Forster, K. (2007). Tracking the acquisition of orthographic skills in developing readers: Masked priming effects. Journal of Experimental Child Psychology, 97, 165–182.

    Article  Google Scholar 

  • Castles, A., Davis, C., & Letcher, T. (1999). Neighbourhood effects on masked form priming in developing readers. Language and Cognitive Processes, 14, 201–224.

    Article  Google Scholar 

  • Comesaña, M., Soares, A. P., Marcet, A., & Perea, M. (in press). On the nature of consonant/vowel differences in letter position coding: Evidence from developing and adult readers. British Journal of Psychology.

  • Davis, C., Castles, A., & Iakovidis, E. (1998). Masked homophone and pseudohomophone priming in children and adults. Language and Cognitive Processes, 13, 625–651.

    Article  Google Scholar 

  • Ehri, L. C. (1992). Reconceptualizing the development of sight word reading and its relationship to recoding. In P. B. Gough, L. E. Ehri, & R. Treiman (Eds.), Reading acquisition (pp. 105–143). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Ehri, L. C., Nunes, S. R., Stahl, S. A., & Willows, D. M. (2001). Systematic phonics instruction helps students learn to read: Evidence from the national reading panel’s meta-analysis. Review of Educational Research, 71, 393–447.

    Article  Google Scholar 

  • Faust, M. E., Balota, D. A., Spieler, D. H., & Ferraro, F. R. (1999). Individual differences in information-processing rate and amount: Implications for group differences in response latency. Psychological Bulletin, 125, 777–799.

    Article  Google Scholar 

  • Ferrand, L., & Grainger, J. (1992). Phonology and orthography in visual word recognition: Evidence from masked non-word priming. Quarterly Journal of Experimental Psychology: Section A, 45, 353–372.

    Article  Google Scholar 

  • Ferrand, L., & Grainger, J. (1993). The time course of orthographic and phonological code activation in the early phases of visual word recognition. Bulletin of the Psychonomic Society, 31, 119–122.

    Article  Google Scholar 

  • Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680–698.

    Google Scholar 

  • Grainger, J., Diependaele, K., Spinelli, E., Ferrand, L., & Farioli, F. (2003). Masked repetition and phonological priming within and across modalities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 1256–1269.

    Google Scholar 

  • Grainger, J., & Ferrand, L. (1994). Phonology and orthography in visual word recognition: Effects of masked homophone primes. Journal of Memory and Language, 33, 218–233.

    Article  Google Scholar 

  • Grainger, J., & Ferrand, L. (1996). Masked orthographic and phonological priming in visual word recognition and naming: Cross-task comparisons. Journal of Memory and Language, 35, 623–647.

    Article  Google Scholar 

  • Grainger, J., & Holcomb, P. J. (2009). Watching the word go by: On the time-course of component processes in visual word recognition. Language and Linguistics Compass, 3, 128–156.

    Article  Google Scholar 

  • Grainger, J., Kiyonaga, K., & Holcomb, P. J. (2006). The time course of orthographic and phonological code activation. Psychological Science, 17, 1021–1026.

    Article  Google Scholar 

  • Grainger, J., Lété, B., Bertand, D., Dufau, S., & Ziegler, J. C. (2012). Evidence for multiple routes in learning to read. Cognition, 123, 280–292.

    Article  Google Scholar 

  • Grainger, J., & Ziegler, J. C. (2011). A dual-route approach to orthographic processing. Frontiers in Psychology, 2, 1–13.

    Article  Google Scholar 

  • Kang, H., & Simpson, G. B. (1996). Development of semantic and phonological priming in a shallow orthography. Developmental Psychology, 32, 860–866.

    Article  Google Scholar 

  • Kohnen, S., & Castles, A. (2013). Pirates at parties: Letter position processing in developing readers. Journal of Experimental Child Psychology, 115, 91–107.

    Article  Google Scholar 

  • Lefavrais, P. (1967). Manuel du test de l’Alouette: test d’analyse de la lecture et de la dyslexie [Alouette: Test for the analysis of reading and dyslexia]. Paris: Éditions du Centre de psychologie appliquée.

    Google Scholar 

  • Lété, B., & Fayol, M. (2013). Substituted-letter and transposed-letter effects in a masked priming paradigm with French developing readers and dyslexics. Journal of Experimental Child Psychology, 114, 47–62.

    Article  Google Scholar 

  • Lété, B., Sprenger-Charolles, L., & Colé, P. (2004). MANULEX: A grade-level lexical database from French elementary school readers. Behavior Research Methods, Instruments, & Computers, 36, 156–166.

    Article  Google Scholar 

  • Lukatela, G., Eaton, T., Lee, C., & Turvey, M. T. (2001). Does visual word identification involve a sub-phonemic level? Cognition, 78, B41–B52.

    Article  Google Scholar 

  • Lukatela, G., Frost, S. J., & Turvey, M. T. (1998). Phonological priming by masked nonword primes in the lexical decision task. Journal of Memory and Language, 39, 666–683.

    Article  Google Scholar 

  • Lupker, S. J., & Davis, C. J. (2009). Sandwich priming: A method for overcoming the limitations of masked priming by reducing lexical competitor effects. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 618–639.

    Article  Google Scholar 

  • Marinus, E., Nation, K., & de Jong, P. F. (2015). Density and length in the neighborhood: Explaining cross-linguistic differences in learning to read in English and in Dutch. Journal of Experimental Child Psychology, 139, 127–147.

    Article  Google Scholar 

  • Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null hypothesis significance testing. Behavior Research Methods, 43, 679–690.

    Article  Google Scholar 

  • McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88, 375–407.

    Article  Google Scholar 

  • Perea, M., Abu Mallouh, R. A., & Carreiras, M. (2013). Early access to abstract representations in developing readers: Evidence from masked priming. Developmental Science, 16, 564–573.

    Article  Google Scholar 

  • Perea, M., Jiménez, M., & Gomez, P. (2015a). Do young readers have fast access to abstract lexical representations? Evidence from masked priming. Journal of Experimental Child Psychology, 129, 140–147.

    Article  Google Scholar 

  • Perea, M., Vergara-Martínez, M., & Gomez, P. (2015b). Resolving the locus of cAsE aLtErNaTiOn effects in visual word recognition: Evidence from masked priming. Cognition, 142, 39–43.

    Article  Google Scholar 

  • Perfetti, C. A., Bell, L. C., & Delaney, S. M. (1988). Automatic (prelexical) phonetic activation in silent word reading: Evidence from backward masking. Journal of Memory and Language, 27, 59–70.

    Article  Google Scholar 

  • Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–196.

    Article  Google Scholar 

  • Rastle, K., & Brysbaert, M. (2006). Masked phonological priming effects in English: Are they real? Do they matter? Cognitive Psychology, 53, 97–145.

    Article  Google Scholar 

  • Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532.

    Article  Google Scholar 

  • Reitsma, P. (1983). Word-specific knowledge in beginning reading. Journal of Research in Reading, 6, 41–56.

    Article  Google Scholar 

  • Share, D. L. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55, 151–218.

    Article  Google Scholar 

  • Share, D. L. (1999). Phonological recoding and orthographic learning: A direct test of the self-teaching hypothesis. Journal of Experimental Child Psychology, 72, 95–129.

    Article  Google Scholar 

  • Share, D. L. (2004). Orthographic learning at a glance: On the time course and developmental onset of self-teaching. Journal of Experimental Child Psychology, 87, 267–298.

    Article  Google Scholar 

  • Sprenger-Charolles, L., Siegel, L. S., & Béchennec, D. (1998a). Phonological mediation and semantic and orthographic factors in silent reading in French. Scientific Studies of Reading, 2, 3–29.

    Article  Google Scholar 

  • Sprenger-Charolles, L., Siegel, L. S., Béchennec, D., & Serniclaes, W. (2003). Development of phonological and orthographic processing in reading aloud, in silent reading, and in spelling: A four-year longitudinal study. Journal of Educational Psychology, 84, 194–217.

    Google Scholar 

  • Sprenger-Charolles, L., Siegel, L. S., & Bonnet, P. (1998b). Reading and spelling acquisition in French: The role of phonological mediation and orthographic factors. Journal of Experimental Child Psychology, 68, 134–165.

    Article  Google Scholar 

  • World Medical Organization. (1996). Declaration of Helsinki. British Medical Journal, 313, 1448–1449.

    Google Scholar 

  • Ziegler, J. C., Bertrand, D., Lété, B., & Grainger, J. (2014a). Orthographic and phonological contributions to reading development: Tracking developmental trajectories using masked priming. Developmental Psychology, 50, 1026–1036.

    Article  Google Scholar 

  • Ziegler, J. C., Ferrand, L., Jacobs, A. M., Rey, A., & Grainger, J. (2000). Visual and phonological codes in letter and word recognition: Evidence from incremental priming. The Quarterly Journal of Experimental Psychology: Section A, 53, 671–692.

    Article  Google Scholar 

  • Ziegler, J. C., Perry, C., & Zorzi, M. (2014b). Modelling reading development through phonological decoding and self-teaching: Implications for dyslexia (p. 369). Biological Sciences: Philosophical Transactions of the Royal Society B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séverine Casalis.

Ethics declarations

All procedures performed in the present study were in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Appendices

Appendix 1

Targets (phonology)

Primes (phonology)

O+P+

O+P−

UR

BLANCHE (/blɑ̃ʃ/)

blan (/blɑ̃/)

bla (/bla/)

dri (/dʀi/)

BONHEUR (/bɔnœʀ/)

bo (/bɔ/)

bon* (/bɔ̃/)

ma* (/ma/)

BONNE (/bɔn/)

bo (/bɔ/)

bon* (/bɔ̃/)

ju (/ʒy/)

BONNET (/bɔne/)

bo (/bɔ/)

bon* (/bɔ̃/)

vu* (/vy/)

BRANCHE (/bʀɑ̃ʃ/)

bran (/bʀɑ̃/)

bra (/bʀa/)

plo (/plɔ/)

CANARD (/kanaʀ/)

ca (/ka/)

can (/kɑ̃/)

vo (/vɔ/)

CINÉMA (/sinəma/)

ci* (/si/)

cin (/sɛ̃/)

ger (/ʒɛʀ/)

CONDUIRE (/kɔ̃dɥiʀ/)

con* (/kɔ̃/)

co (/kɔ/)

sim (/sɛ̃/)

CONFITURE (/kɔ̃fityʀ/)

con* (/kɔ̃/)

co (/kɔ/)

pu* (/py/)

CONNAÎTRE (/kɔnɛtʀ/)

co (/kɔ/)

con* (/kɔ̃/)

dis* (/dis/)

DONNER (/dɔne/)

do* (/dɔ/)

don* (/dɔ̃/)

lis* (/lis/)

FENÊTRE (/fənɛtʀ/)

fe (/fə/)

fen (/fɑ̃/)

jar (/ʒaʀ/)

FINIR (/finiʀ/)

fi (/fi/)

fin* (/fɛ̃/)

so (/sɔ/)

FRANÇAIS (/fʀɑ̃sɛ/)

fran (/fʀɑ̃/)

fra (/fʀa/)

clus (/klus/)

GENDARME (/ʒɑ̃daʀm/)

gen (/ʒɑ̃/)

ge (/ʒə/)

fic (/fik/)

GENOUX (/ʒənu/)

ge (/ʒə/)

gen (/ʒɑ̃/)

til (/til/)

GENTIL (/ʒɑ̃ti/)

gen (/ʒɑ̃/)

ge (/ʒə/)

ru (/ʀu/)

GRENIER (/gʀənje/)

gre (/gʀə/)

gren (/gʀɑ̃/)

plu (/ply/)

GRENOUILLE (/gʀənuj/)

gre (/gʀə/)

gren (/gʀɑ̃/)

cla (/kla/)

LANGUE (/lɑ̃g/)

lan (/lɑ̃/)

la* (/la/)

fo (/fɔ/)

LENTEMENT (/lɑ̃təmɑ̃/)

len (/lɑ̃/)

le* (/lə/)

ra (/ʀa/)

LINGE (/lɛ̃ʒ/)

lin* (/lɛ̃/)

li (/li/)

ja (/ʒa/)

LONGUE (/lɔ̃ʒ/)

lon (/lɔ̃/)

lo (/lɔ/)

ri* (/ʀi/)

LUNDI (/lœ̃di/)

lun (/lœ̃/)

lu* (/ly/)

ros (/ʀɔs/)

LUNETTES (/lynɛt/)

lu* (/ly/)

lun (/lœ̃/)

de* (/də/)

MINUTE (/minyt/)

mi* (/mi/)

min (/mɛ̃/)

na (/na/)

MONDE (/mɔ̃d/)

mon* (/mɔ̃/)

mo (/mɔ/)

ter (/tɛʀ/)

MONTRER (/mɔ̃tʀe/)

mon* (/mɔ̃/)

mo (/mɔ/)

gri (/gʀi/)

PANIER (/panje/)

pa (/pa/)

pan (/pɑ̃/)

cir (/siʀ/)

PANNE (/pan/)

pa (/pa/)

pan (/pɑ̃/)

be (/bə/)

PENSE (/pɑ̃s/)

pen (/pɑ̃/)

pe (/pə/)

tis (/tis/)

PLANÈTE (/planɛt/)

pla (/pla/)

plan* (/plɑ̃/)

cris* (/kʀis/)

PRENDRE (/pʀɑ̃dʀ/)

pren (/pʀɑ̃/)

pre (/pʀə/)

fla (/fla/)

PRINCESSE (/pʀɛ̃sɛs/)

prin (/pʀɛ̃/)

pri (/pʀi/)

blam (/blɑ̃/)

RENARD (/ʀənaʀ/)

re (/ʀə/)

ren (/ʀɑ̃/)

fus (/fys/)

RENDRE (/ʀɑ̃dʀ/)

ren (/ʀɑ̃/)

re (/ʀə/)

pi (/pi/)

RONDE (/ʀɔ̃d/)

ron (/ʀɔ̃/)

ro (/ʀɔ/)

du* (/dy/)

SINGE (/sɛ̃ʒ/)

sin (/sɛ̃/)

si* (/si/)

noc (/nɔk/)

SINON (/sinɔ̃/)

si* (/si/)

sin (/sɛ̃/)

dur* (/dyʀ/)

TONNERRE (/tɔnɛʀ/)

to (/tɔ/)

ton* (/tɔ̃/)

fes (/fɛs/)

VENIR (/vəniʀ/)

ve (/və/)

ven (/vɑ̃/)

mul (/myl/)

VENTRE (/vɑ̃tʀ/)

ven (/vɑ̃/)

ve (/və/)

gir (/ʒiʀ/)

VENUE (/vəny/)

ve (/və/)

ven (/vɑ̃/)

ni* (/ni/)

VINGT (/vɛ̃/)

vin* (/vɛ̃/)

vi (/vi/)

te* (/tə/)

  1. O+P+, phonological and orthographic primes; O+P−, orthographic primes; UR, unrelated primes; * word primes excluded in the second analysis (Appendix 2)

Appendix 2

This second analysis included data from only pseudoword partial priming (Appendix 1). The mean latencies in the O+P+, O+P− and UR conditions were 990 ms (SD = 191), 1075 ms (SD = 265) and 1066 ms (SD = 249), respectively, in third grade and 837 ms (SD = 157), 841 ms (SD = 158) and 898 ms (SD = 200) in fifth grade. The analyses were exactly the same as analyses with all primes. ANOVA on the inverse RTs revealed an interaction between priming condition and grade [F 1(2, 172) = 4.31, p = .015,  \( {\upeta }_{\text{p}}^{2} \) = .05; F 2(2, 72) = 4.31, p = .017,  \( {\upeta }_{\text{p}}^{2} \) = .11]. There was also a main effect of priming condition [F 1(2, 172) = 10.61, p < .001, \( {\upeta }_{\text{p}}^{2} \) = .11; F 2(2, 72) = 5.94, p = .004, \( {\upeta }_{\text{p}}^{2} \) = .14] and a main effect of grade, with fifth graders responding faster (859 ms) than third graders (1044 ms), F 1(1, 86) = 20.83, p < .001,  \( {\upeta }_{\text{p}}^{2} \) = .19; F 2(1, 36) = 82.88, p < .001,  \( {\upeta }_{\text{p}}^{2} \) = .70. In third grade, we found a main effect of priming condition [F 1(2, 80) = 7.13, p = .001,  \( {\upeta }_{\text{p}}^{2} \) = .15; F 2(2, 36) = 3.89, p = .028,  \( {\upeta }_{\text{p}}^{2} \) = .18]. Bonferroni-corrected pairwise comparison showed that lexical decisions were significantly faster (56 ms) in the O+P+ condition than in the O+P− condition (p = .003). The comparison between the O+P− condition and the UR condition did not differ significantly (p = .91). In fifth grade, there was a main effect of priming condition [F 1(2, 92) = 7.64, p < .001,  \( {\upeta }_{\text{p}}^{2} \) = .14; F 2(2, 36) = 6.15, p = .005,  \( {\upeta }_{\text{p}}^{2} \) = .25]. Bonferroni-corrected pairwise comparison failed to reveal a significant difference between the O+P+ condition and the O+P− condition (p = .99). Lexical decisions were significantly faster (32 ms) in the O+P− condition than in the UR condition (p = .004).

In adults, the mean latencies in the O+P+, O+P− and UR conditions were 554 ms (SD = 89), 554 ms (SD = 88) and 570 ms (SD = 88) respectively. There was a main effect of priming condition in analysis by participant [F 1(2, 58) = 3.99, p = .024,  \( {\upeta }_{\text{p}}^{2} \) = .12; F 2(2, 36) = 1.54, p = .23]. Bonferroni-corrected pairwise comparison failed to reveal a significant difference between the O+P+ condition and the O+P− condition (p = .99). Lexical decisions were significantly faster (16 ms) in the O+P− condition than in the UR condition (p = .046).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauval, K., Perre, L. & Casalis, S. Automatic activation of phonological code during visual word recognition in children: a masked priming study in grades 3 and 5. Read Writ 30, 51–67 (2017). https://doi.org/10.1007/s11145-016-9662-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11145-016-9662-8

Keywords

Navigation