Skip to main content
Log in

Valorization of bio-renewably available ethanol over alkali-exchanged ZSM-5: improved aromatic selectivity and catalyst life

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

We have studied bio-renewably available ethanol valorization. Literature on ethanol to aromatic compounds is rather scant. We studied the catalytic performance of dealuminated ZSM-5 and Li-, Na-, and K-exchanged ZSM-5. This led to reduced strength and number of Bronsted acid sites and the formation of basic and Lewis acid sites. Reactions carried out with ethanol at 450 °C and 30 kg/cm2 afforded higher aromatic selectivity (50.6% with Li-ZSM-5, 45.3% with Na-ZSM-5, 32.8% with K-ZSM-5, 54.9% with dealuminated ZSM-5, and 50.8% with H-ZSM-5), whereas dealuminated ZSM-5 and Li-ZSM-5 showed reduced coke formation among all the catalysts. The catalysts were characterized by Py-FTIR, N2- and CO2-adsorption–desorption, NH3-TPD, and ICP-AES to substantiate/rationalize observations. Coking behavior of catalysts was characterized by DTG-TGA analysis, GC–MS of coke deposited on spent catalysts, and the “conversion capacity”- and the “a minus b”-parameters. Plausible reaction mechanism involving different active sites is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The partial data supporting this study are available in the supplementary information. The remaining data that support the findings of this study are available from the corresponding author, [DB], upon reasonable request.

References

  1. Xu H, Ou L, Li Y, Hawkins TR, Wang M (2022) Life cycle greenhouse gas emissions of biodiesel and renewable diesel production in the United States. Environ Sci Technol 56:7512–7521. https://doi.org/10.1021/acs.est.2c00289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liang T, Chen J, Qin Z, Wng S, Wang P, Jin S, Dong M, Wang J, Fan W (2023) Insight into induction period of methanol conversion reaction: reactivity of ethene-precursors over H-ZSM-5 zeolite is independent of Brϕnsted acid site density. Fuel. https://doi.org/10.1016/j.fuel.2022.126062

    Article  Google Scholar 

  3. Wang X, Dai W, Wu G, Li L, Guan N, Hunger M (2012) Phosphorus modified HMCM-22: characterization and catalytic application in methanol-to-hydrocarbons conversion. Microporous Mesoporous Mater 151:99–106. https://doi.org/10.1016/j.micromeso.2011.11.008

    Article  CAS  Google Scholar 

  4. Bjørgen M, Akyalcin S, Olsbye U, Benard S, Kolboi S, Svelle S (2010) Methanol to hydrocarbons over large cavity zeolites: toward a unified description of catalyst deactivation and the reaction mechanism. J Catal 275:170–180. https://doi.org/10.1016/j.jcat.2010.08.001

    Article  CAS  Google Scholar 

  5. Varvarin AM, Khomenko KM, Brei VV (2013) Conversion of n-butanol to hydrocarbons over H-ZSM-5, H-ZSM-11, H-L and H-Y zeolites. Fuel 106:617–620. https://doi.org/10.1016/j.fuel.2012.10.032

    Article  CAS  Google Scholar 

  6. Liu D, Liu Y, Yi E, Goh EYL, Jia C, Chu Y, Gwei CG, Chang J, Borgna A (2016) Catalytic conversion of ethanol over ZSM-11 based catalysts. Appl Catal A Gen 523:118–129. https://doi.org/10.1016/j.apcata.2016.05.030

    Article  CAS  Google Scholar 

  7. Zhang M, Xu S, Li J, Wei Y, Gong Y, Chu Y, Zheng A, Wang J, Zhang W, Wu X, Deng F, Liu Z (2016) Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: carbenium ions formation and reaction mechanism. J Catal 335:47–57. https://doi.org/10.1016/j.jcat.2015.12.007

    Article  CAS  Google Scholar 

  8. Huyen PT, Trinh VD, Teresa Portilla M, Martínez C (2021) Influence of boron promotion on the physico-chemical properties and catalytic behavior of Zn/ZSM-5 in the aromatization of n-hexane. Catal Today 366:97–102. https://doi.org/10.1016/j.cattod.2020.03.030

    Article  CAS  Google Scholar 

  9. van der Bij HE, Weckhuysen BM (2015) Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chem Soc Rev 44:7406–7428. https://doi.org/10.1039/C5CS00109A

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bakare IA, Muraza O, Yoshioka M, Yomani ZH, Yokoi T (2016) Conversion of methanol to olefins over Al-rich ZSM-5 modified with alkaline earth metal oxides. Catal Sci Technol 6:7852–7859. https://doi.org/10.1039/C6CY00867D

    Article  CAS  Google Scholar 

  11. Conte M, Lopez-Sanchez JA, He Q, Morgan DJ, Ryabenkova Y, Bartley JK, Carley AF, Taylor SH, Kiely CJ, Khalid K, Hutchings GJ (2012) Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catal Sci Technol 2:105–112. https://doi.org/10.1039/C1CY00299F

    Article  CAS  Google Scholar 

  12. Ding K, Zhong Z, Wang J, Zhang B, Addy M, Ruan R (2017) Effects of alkali-treated hierarchical HZSM-5 zeolites on the production of aromatic hydrocarbons from catalytic fast pyrolysis of waste cardboard. J Anal Appl Pyrolysis 125:153–161. https://doi.org/10.1016/j.jaap.2017.04.006

    Article  CAS  Google Scholar 

  13. Sousa ZSB, Veloso CO, Henriques CA, Teixeira da Silva V (2016) Ethanol conversion into olefins and aromatics over HZSM-5 zeolite: influence of reaction conditions and surface reaction studies. J Mol Catal A 422:266–274. https://doi.org/10.1016/j.molcata.2016.03.005

    Article  CAS  Google Scholar 

  14. Navarro Yerga RM, Álvarez-Galván MC, Mota N, Villoria de la Mano JA, Al-Zahrani SM, Fierro JLG (2011) Catalysts for hydrogen production from heavy hydrocarbons. ChemCatChem 3:440–457. https://doi.org/10.1002/cctc.201000315

    Article  CAS  Google Scholar 

  15. Costa E, Uguina A, Aguado J, Hernandez PJ (1985) Ethanol to gasoline process: effect of variables, mechanism, and kinetics. Ind Eng Chem Process Des Dev 24:239–244. https://doi.org/10.1021/i200029a003

    Article  CAS  Google Scholar 

  16. Chen J, Thomas JM, Wright PA, Townsend RP (1994) Silicoaluminophosphate number eighteen (SAPO-18): a new microporous solid acid catalyst. Catal Letters 28:241–248. https://doi.org/10.1007/BF00806053

    Article  CAS  Google Scholar 

  17. Huang M, Kaliaguine S (1993) Propene aromatization over alkali-exchanged ZSM-5 zeolites. J Mol Catal 81:37–49. https://doi.org/10.1016/0304-5102(93)80021-L

    Article  CAS  Google Scholar 

  18. Mentzel UV, Shunmugavel S, Hruby SL, Christensen CH, Holm MS (2009) High yield of liquid range olefins obtained by converting i -propanol over zeolite H-ZSM-5. J Am Chem Soc 131:17009–17013. https://doi.org/10.1021/ja907692t

    Article  CAS  PubMed  Google Scholar 

  19. Mahale RS, Parikh PA (2020) Aromatization of n-hexane: synergism afforded by C1–C3 alcohols. Chem Eng Sci 217:115519. https://doi.org/10.1016/j.ces.2020.115519

    Article  CAS  Google Scholar 

  20. Janssens TVW (2009) A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts. J Catal 264:130–137. https://doi.org/10.1016/j.jcat.2009.03.004

    Article  CAS  Google Scholar 

  21. Chen L, Wang X, Guo X, Guo H, Liu H, Chen Y (2007) In situ nanocrystalline HZSM-5 zeolites encaged heteropoly acid H3 PMo12 O40 and Ni catalyst for hydroconversion of n-octane. Chem Eng Sci 62:4469–4478. https://doi.org/10.1016/j.ces.2007.05.013

    Article  CAS  Google Scholar 

  22. Zhao P, Li Z, Zhang Y, Cui D, Guo Q, Dong Z, Qi G, Xu J, Deng F (2022) Tuning Lewis acid sites in TS-1 zeolites for hydroxylation of anisole with hydrogen peroxide. Microporous Mesoporous Mater 335:111840. https://doi.org/10.1016/j.micromeso.2022.111840

    Article  CAS  Google Scholar 

  23. Guo Y, Zhao L, Bi M, Zhang B, Guo K, Miao L, Cai C, Chen L, Shi X, Cheng W (2023) Molecular volume-controlled shape-selective catalysis for synthesis of cinnamate over microporous zeolites. Mol Catal 540:113042. https://doi.org/10.1016/j.mcat.2023.113042

    Article  CAS  Google Scholar 

  24. Yuan C, Liu H, Zhang Z, Lu H, Zhu Q, Chen Y (2015) Alkali-metal-modified ZSM-5 zeolites for improvement of catalytic dehydration of lactic acid to acrylic acid. Chin J Catal 36:1861–1866. https://doi.org/10.1016/S1872-2067(15)60970-6

    Article  CAS  Google Scholar 

  25. Busca G (2017) Acidity and basicity of zeolites: a fundamental approach. Microporous Mesoporous Mater 254:3–16. https://doi.org/10.1016/j.micromeso.2017.04.007

    Article  CAS  Google Scholar 

  26. Chen Y-J, Huang S-H, Uan J-Y, Lin H-T (2021) Synthesis of catalytic Ni/Cu nanoparticles from simulated wastewater on Li–Al mixed metal oxides for a two-stage catalytic process in ethanol steam reforming: catalytic performance and coke properties. Catalysts 11:1124. https://doi.org/10.3390/catal11091124

    Article  CAS  Google Scholar 

  27. Xu Q, Cai C, Wang X, Zhao N, Chen L, Wang X, Zhang B, Ren D (2024) Hydroconversion of n-octane over different MoO3 phase modified nanosized HZSM-5 zeolites. React Kinet Mech Catal. https://doi.org/10.1007/s11144-024-02582-5

    Article  Google Scholar 

  28. Wang S, Li J, Xu Q, Song S, Jiang Y, Chen L, Shi X, Cheng W (2023) Synthesis of spherical nano-ZSM-5 zeolite with intergranular mesoporous for alkylation of ethylbenzene with ethanol to produce m-diethylbenzene. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2023.11.015

    Article  Google Scholar 

  29. Klepel O, Hunger B (2005) Temperature-programmed desorption (TPD) of carbon dioxide on alkali-metal cation-exchanged faujasite type zeolites. J Therm Anal Calorim 80:201–206. https://doi.org/10.1007/s10973-005-0636-3

    Article  CAS  Google Scholar 

  30. Uslamin EA, Saito H, Kosinov N, Pidko E, Sekine Y, Hensen EJM (2020) Aromatization of ethylene over zeolite-based catalysts. Catal Sci Technol 10:2774–2785. https://doi.org/10.1039/C9CY02108F

    Article  CAS  Google Scholar 

  31. Tabassum N, Ali SS (2022) A review on synthesis and transformation of ethanol into olefins using various catalysts. Catal Surv Asia 26:261–280. https://doi.org/10.1007/s10563-021-09348-2

    Article  CAS  Google Scholar 

  32. Xia W, Wang F, Mu X, Chen K, Takahashi A, Nakamura I, Fuzjitani T (2017) Highly selective catalytic conversion of ethanol to propylene over yttrium-modified zirconia catalyst. Catal Commun 90:10–13. https://doi.org/10.1016/j.catcom.2016.11.011

    Article  CAS  Google Scholar 

  33. Seemala B, Wyman CE (2022) Relationship between ZSM-5 pore modifications and gallium proximity and liquid hydrocarbon number distribution from ethanol oligomerization. Catal Sci Technol 12:4903–4916. https://doi.org/10.1039/D2CY00288D

    Article  CAS  Google Scholar 

  34. Xia W, Wang J, Wang L, Qian C, Ma C, Huang Y, Fan Y, Hou M, Chen K (2021) Ethylene and propylene production from ethanol over Sr/ZSM-5 catalysts: a combined experimental and computational study. Appl Catal B 294:120242. https://doi.org/10.1016/j.apcatb.2021.120242

    Article  CAS  Google Scholar 

  35. Sun X, Mueller S, Liu Y, Shi H, Haller GL, Sanchez-Sanchez M, van Veen AC, Lercher JA (2014) On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. J Catal 317:185–197. https://doi.org/10.1016/j.jcat.2014.06.017

    Article  CAS  Google Scholar 

  36. Chen G, Fang L, Li T, Xiang Y (2022) Ultralow-loading Pt/zn hybrid cluster in zeolite HZSM-5 for efficient dehydroaromatization. J Am Chem Soc 144:11831–11839. https://doi.org/10.1021/jacs.2c04278

    Article  CAS  PubMed  Google Scholar 

  37. Ramasamy KK, Wang Y (2014) Ethanol conversion to hydrocarbons on HZSM-5: effect of reaction conditions and Si/Al ratio on the product distributions. Catal Today 237:89–99. https://doi.org/10.1016/j.cattod.2014.02.044

    Article  CAS  Google Scholar 

  38. Wang H, Hou Y, Sun W, Hu Q, Xiong H, Wang T, Yan B, Qian W (2020) Insight into the effects of water on the ethene to aromatics reaction with HZSM-5. ACS Catal 10:5288–5298. https://doi.org/10.1021/acscatal.9b05552

    Article  CAS  Google Scholar 

  39. Van der Borght K, Batchu R, Galvita VV, Alexopoulos K, Reyniers MF, Thybaut JW, Marin GB (2016) Insights into the reaction mechanism of ethanol conversion into hydrocarbons on H-ZSM-5. Angew Chem Int Ed 55:12817–12821. https://doi.org/10.1002/anie.201607230

    Article  CAS  Google Scholar 

  40. Bailleul S, Yarulina I, Hoffman AEJ, Dokania A, Abou-Hamad E, Chowdhury AD, Pieters G, Hajek J, De Wispelaere K, Waroquier M, Gascon J, Van Speybroeck V (2019) A supramolecular view on the cooperative role of brønsted and lewis acid sites in zeolites for methanol conversion. J Am Chem Soc 141:14823–14842. https://doi.org/10.1021/jacs.9b07484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anekwe IMS, Oboirien B, Isa YM (2023) Catalytic conversion of bioethanol over cobalt and nickel-doped HZSM-5 zeolite catalysts. Biofuels Bioprod Biorefin. https://doi.org/10.1002/bbb.2536

    Article  Google Scholar 

  42. Fernandes Machado NRC, Calsavara V, Astrath NGC, Neto AM, Baesso ML (2006) Hydrocarbons from ethanol using [Fe, Al]ZSM-5 zeolites obtained by direct synthesis. Appl Catal A 311:193–198. https://doi.org/10.1016/j.apcata.2006.06.017

    Article  CAS  Google Scholar 

  43. Freeman D, Wells RPK, Hutchings GJ (2002) Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts. J Catal 205:358–365. https://doi.org/10.1006/jcat.2001.3446

    Article  CAS  Google Scholar 

  44. Comelli RA, Fígoli NS (1991) Effect of pressure on the transformation of methanol into hydrocarbons on an amorphous silica—alumina. Appl Catal 73:185–194. https://doi.org/10.1016/0166-9834(91)85136-J

    Article  CAS  Google Scholar 

  45. Ma Z, Fu T, Wang Y, Shao J, Ma Q, Zhang C, Cui L, Li Z (2019) Silicalite-1 derivational desilication-recrystallization to prepare hollow nano-ZSM-5 and highly mesoporous micro-ZSM-5 catalyst for methanol to hydrocarbons. Ind Eng Chem Res 58:2146–2158. https://doi.org/10.1021/acs.iecr.8b03858

    Article  CAS  Google Scholar 

  46. Dyballa M, Obenaus U, Blum M, Dai W (2018) Alkali metal ion exchanged ZSM-5 catalysts: on acidity and methanol-to-olefin performance. Catal Sci Technol 8:4440–4449. https://doi.org/10.1039/C8CY01032C

    Article  CAS  Google Scholar 

  47. Moya-Barrios R, Cozens FL (2006) Generation and reactivity of simple chloro(aryl)carbenes within the cavities of nonacidic zeolites. J Am Chem Soc 128:14836–14844. https://doi.org/10.1021/ja064779+

    Article  CAS  PubMed  Google Scholar 

  48. Xia W, Ma C, Huang Y, Li X, Wang X, Chen K, Liu D (2022) Bioethanol conversion into propylene over various zeolite catalysts: reaction optimization and catalyst deactivation. Nanomaterials 12:2746. https://doi.org/10.3390/nano12162746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. da Fernandes D, S, Oliveira Veloso C de, Henriques CA (2021) Propylene and aromatics from ethylene conversion over ZSM-5: effect of zeolite composition. Catal Today 381:108–117. https://doi.org/10.1016/j.cattod.2020.08.014

    Article  CAS  Google Scholar 

  50. Wu P, Tang X, He Z, Liu Y, Wang Z (2022) Alkali metal poisoning and regeneration of selective catalytic reduction denitration catalysts: recent advances and future perspectives. Energy Fuels 36:5622–5646. https://doi.org/10.1021/acs.energyfuels.2c01036

    Article  CAS  Google Scholar 

  51. Wang Z, O’Dell LA, Zeng X, Liu C, Zhao S, Zhang W, Gaborieau M, Jiang Y, Huang J (2019) Insight into three-coordinate aluminum species on ethanol-to-olefin conversion over ZSM-5 zeolites. Angew Chem Int Ed 58:18061–18068. https://doi.org/10.1002/anie.201910987

    Article  CAS  Google Scholar 

  52. Rossetti I, Compagnoni M, Finocchio E, Ramis G, Di Michele A, Millot Y, Dzwigaj S (2017) Ethylene production via catalytic dehydration of diluted bioethanol: a step towards an integrated biorefinery. Appl Catal B 210:407–420. https://doi.org/10.1016/j.apcatb.2017.04.007

    Article  CAS  Google Scholar 

  53. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Jansen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51:5810–5831. https://doi.org/10.1002/anie.201103657

    Article  CAS  Google Scholar 

  54. Svelle S, Joensen F, Nerlov J, Lillerud KP, Kolboi S, Bjørgen M (2006) Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 128:14770–14771. https://doi.org/10.1021/ja065810a

    Article  CAS  PubMed  Google Scholar 

  55. Yarulina I, Chowdhury AD, Meirer F, Weckhuysen BM, Gascon J (2018) Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat Catal 1:398–411. https://doi.org/10.1038/s41929-018-0078-5

    Article  CAS  Google Scholar 

  56. Zhang Y, Liu Y, Li J (2022) In situ synthesis of metal-containing ZSM-5 and its catalytic performance in aromatization of methanol. ACS Omega 7:24241–24248. https://doi.org/10.1021/acsomega.2c01442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chowdhury AD, Lucini Paioni A, Whiting GT, Fu D, Baldus M, Weckhuysen BM (2019) Unraveling the homologation reaction sequence of the zeolite-catalyzed ethanol-to-hydrocarbons process. Angew Chem Int Ed 58:3908–3912. https://doi.org/10.1002/anie.201814268

    Article  CAS  Google Scholar 

  58. Johansson R, Hruby SL, Rass-Hansen J, Christensen CH (2009) The hydrocarbon pool in ethanol-to-gasoline over HZSM-5 catalysts. Catal Lett 127:1–6. https://doi.org/10.1007/s10562-008-9711-2

    Article  CAS  Google Scholar 

  59. Kumar P, Thybaut JW, Svelle S, Olsbye U, Marin GB (2013) Single-event microkinetics for methanol to olefins on H-ZSM-5. Ind Eng Chem Res 52:1491–1507. https://doi.org/10.1021/ie301542c

    Article  CAS  Google Scholar 

  60. Cui Z, Liu Q, Ma Z, Bian SW, Song WG (2008) Direct observation of olefin homologations on zeolite ZSM-22 and its implications to methanol to olefin conversion. J Catal 258:83–86. https://doi.org/10.1016/j.jcat.2008.05.029

    Article  CAS  Google Scholar 

  61. Liu B, France L, Wu C, Jiang Z, Kuznetsov VL, Al-Megren HA, Al-Kinany M, Aldrees SA, Xiao T, Edwards PP (2015) Methanol-to-hydrocarbons conversion over MoO 3 /H-ZSM-5 catalysts prepared via lower temperature calcination: a route to tailor the distribution and evolution of promoter Mo species, and their corresponding catalytic properties. Chem Sci 6:5152–5163. https://doi.org/10.1039/C5SC01825K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wragg DS, Kalantzopoulos GN, Pappas DK, Pinilla-herrero I, Rojo-gama D, Redekop E, Di M, Beato P, Lundegaard LF, Svelle S (2021) Mapping the coke formation within a zeolite catalyst extrudate in space and time by operando computed X-ray diffraction tomography. J Catal 401:1–6. https://doi.org/10.1016/j.jcat.2021.07.001

    Article  CAS  Google Scholar 

  63. Liu Z, Zhang Z, Xing W, Komarneni S, Yan Z, Gao X, Zhou X (2014) Tailoring acidity of HZSM-5 nanoparticles for methyl bromide dehydrobromination by Al and Mg incorporation. Nanoscale Res Lett 9:550. https://doi.org/10.1186/1556-276X-9-550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalantzopoulos GN, Rojo Gama D, Pappas DK, Dovgaliuk I, Olsbye U, Beato P, Lundegaard LF, Wragg DS, Svelle S (2022) Real-time regeneration of a working zeolite monitored via operando X-ray diffraction and crystallographic imaging: how coke flees the MFI framework. Dalt Trans 51:16845–16851. https://doi.org/10.1039/D2DT02845J

    Article  CAS  Google Scholar 

  65. Rojo-Gama D, Mentel L, Kalantzopoulos GN, Pappas DK, Dovgaliuk I, Olsbye U, Lillerud KP, Beato P, Lundegaard LF, Wragg DS, Svelle S (2018) Deactivation of zeolite catalyst H-ZSM-5 during conversion of methanol to gasoline: operando time- and space-resolved X-ray diffraction. J Phys Chem Lett 9:1324–1328. https://doi.org/10.1021/acs.jpclett.8b00094

    Article  CAS  PubMed  Google Scholar 

  66. Díaz M, Epelde E, Valecillos J, Izaddoust S, Aguayo AT, Bilbao J (2021) Coke deactivation and regeneration of HZSM-5 zeolite catalysts in the oligomerization of 1-butene. Appl Catal B 291:120076. https://doi.org/10.1016/j.apcatb.2021.120076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Ganapati V. Shanbhag (PPISR, Bengaluru), Dr. Sumit Kumar Pramanik (CSMCRI, Bhavnagar), Dr. Ritambhara Jangir (SVNIT, Surat), SAIF IIT Bombay and MRC MNIT Jaipur for extending their analytical facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PAP: Conceptualisation, result analyses and interpretation, arranging resources, supervision of experiments, review and editing the manuscript. JKP: monitoring experimental work DB: Conducted experiments, generated, and analyzed data, result analysis, writing the original draft of the manuscript.

Corresponding author

Correspondence to Digvijay Badghaiya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1115 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badghaiya, D., Parikh, J.K. & Parikh, P.A. Valorization of bio-renewably available ethanol over alkali-exchanged ZSM-5: improved aromatic selectivity and catalyst life. Reac Kinet Mech Cat (2024). https://doi.org/10.1007/s11144-024-02612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11144-024-02612-2

Keywords

Navigation