Skip to main content
Log in

Hydroconversion of n-octane over different MoO3 phase modified nanosized HZSM-5 zeolites

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The n-octane hydroconversion catalysts were prepared by the impregnation of nanosized HZSM-5 with ammonium heptamolybdate or phosphomolybdic acid (PMA) precursors and were characterised by SEM, BET, FT-IR, UV–Vis, XRD, Py-IR and NH3-TPD. The hydroconversion of n-octane over a little phosphorus doping on the n-octane hydroconversion activity of MoO3/ZSM-5 catalysts has been investigated in order to obtain light isomers, alkanes and aromatic products with high octane number. In particular, the use of PMA increases the ability of aromatization and producing light iso-alkanes for nanosized HZSM-5 zeolites. The yield of total aromatics and i/n ratio over PMA-based MoO3/ZSM-5 catalysts reached 31.7 and 3.3 after 10 h of continuous reaction, respectively. When 0.2 wt% of phosphorus is added to the catalyst prepared from heptamolybdate, the activity is suppressed. A mixture of monoclinic β-MoO3 and orthorhombic α-MoO3 favors increasing aromatization performance over nanosized HZSM-5 zeolites, and orthorhombic α-MoO3 is beneficial to the production of light iso-alkanes. It could be attributed to the difference between orthorhombic α-MoO3 and monoclinic β-MoO3 as well as the structural dissimilarity between the two phases on nanosized HZSM-5 zeolites. The improved activity of n-octane hydroconversion over these catalysts and the mechanism of hydroconversion is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Thybaut JW, Marin GB (2016) Chapter two-multiscale aspects in hydrocracking: from reaction mechanism over catalysts to kinetics and industrial application. Adv Catal 59:109–238

    Article  CAS  Google Scholar 

  2. Kuznetsov P (2003) Study of n-octane hydrocracking and hydroisomerization over Pt/HY zeolites using the reactors of different configurations. J Catal 218:12–23

    Article  CAS  Google Scholar 

  3. Wei Q, Zhang P, Liu X, Huang W, Fan X, Yan Y, Zhang R, Wang L, Zhou Y (2020) Synthesis of Ni-modified ZSM-5 zeolites and their catalytic performance in n-octane hydroconversion. Front Chem 8:586445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yori JC, Grau JM, Benítez VM, Sepúlveda J (2005) Hydroisomerization-cracking of n-octane on heteropolyacid H3PW12O40 supported on ZrO2, SiO2 and carbon. Appl Catal A 286:71–78

    Article  CAS  Google Scholar 

  5. Yang J, Roth P, Durbin T, Karavalakis G (2019) Impacts of gasoline aromatic and ethanol levels on the emissions from GDI vehicles: Part 1. Influence on regulated and gaseous toxic pollutants. Fuel 252:799–811

    Article  CAS  Google Scholar 

  6. Yang J, Roth P, Zhu H, Durbin TD, Karavalakis G (2019) Impacts of gasoline aromatic and ethanol levels on the emissions from GDI vehicles: Part 2. Influence on particulate matter, black carbon, and nanoparticle emissions. Fuel 252:812–820

    Article  CAS  Google Scholar 

  7. Zhang M, Ge Y, Wang X, Xu H, Tan J, Hao L (2021) Effects of ethanol and aromatic compositions on regulated and unregulated emissions of E10-fuelled China-6 compliant gasoline direct injection vehicles. Renew Energy 176:322–333

    Article  CAS  Google Scholar 

  8. Demirbas A, Balubaid MA, Basahel AM, Ahmad W, Sheikh MH (2015) Octane rating of gasoline and octane booster additives. Pet Sci Technol 33:1190–1197

    Article  CAS  Google Scholar 

  9. Chen Y, Liu D, Wang R, Xu L, Tan J, Shu M, Tian L, Jin Y, Zhang X, Lin Z (2022) Bronsted acid-catalyzed carbonyl-olefin metathesis: synthesis of phenanthrenes via phosphomolybdic acid as a catalyst. J Org Chem 87:351–362

    Article  CAS  PubMed  Google Scholar 

  10. Wang SS, Yang GY (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115:4893–4962

    Article  CAS  PubMed  Google Scholar 

  11. Ishikawa S, Ikeda T, Koutani M, Yasumura S, Amakawa K, Shimoda K, Jing Y, Toyao T, Sadakane M, Shimizu KI, Ueda W (2022) Oxidation catalysis over solid-state Keggin-type phosphomolybdic acid with oxygen defects. J Am Chem Soc 144:7693–7708

    Article  CAS  PubMed  Google Scholar 

  12. Yu J, Wang L, Zhang G, Yan R, Li C (2022) Effects of V, Cs, and Cu on the thermal behavior of Keggin phosphomolybdates. J Therm Anal Calorim 147:8709–8718

    Article  CAS  Google Scholar 

  13. Gomez Sainero LM, Damyanova S, Fierro JLG (2001) Methanol oxidation over ZrO2–SiO2 supported phosphomolybdic acid. Appl Catal A 208:63–75

    Article  CAS  Google Scholar 

  14. Predoeva A, Damyanova S, Gaigneaux EM, Petrov L (2007) The surface and catalytic properties of titania-supported mixed PMoV heteropoly compounds for total oxidation of chlorobenzene. Appl Catal A 319:14–24

    Article  CAS  Google Scholar 

  15. Babu BH, Parameswaram G, Kumar ASH, Prasad PSS, Lingaiah N (2012) Vanadium containing heteropoly molybdates as precursors for the preparation of MoVP oxides supported on alumina catalysts for ammoxidation of m-xylene. Appl Catal A 445–446:339–345

    Article  Google Scholar 

  16. Demirel B, Fang S, Givens EN (2000) Transformation of phosphomolybdates into an active catalyst with potential application in hydroconversion processes. Appl Catal A 201:177–190

    Article  CAS  Google Scholar 

  17. Gericke SM, Rissler J, Bermeo M, Wallander H, Karlsson H, Kollberg L, Scardamaglia M, Temperton R, Zhu S, Sigfridsson Clauss KGV, Hulteberg C, Shavorskiy A, Merte LR, Messing ME, Zetterberg J, Blomberg S (2022) In situ H2 reduction of Al2O3-supported Ni- and Mo-based catalysts. Catalysts 12:755

    Article  CAS  Google Scholar 

  18. Damyanova S, Gomez LM, Bañares MA, Fierro JLG (1999) Thermal behavior of 12-molybdophosphoric acid supported on zirconium-loaded silica. Chem Mater 12:501–510

    Article  Google Scholar 

  19. Burns S, Hargreaves JSJ, Pal P, Parida KM, Parija S (2006) Using phosphorus doping of MoO3/ZSM-5 to modify performance in methane dehydroaromatisation. J Mol Catal A 245:141–146

    Article  CAS  Google Scholar 

  20. Song W, Justice RE, Jones CA, Grassian VH, Larsen SC (2004) Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5. Langmuir 2:8301–8306

    Article  Google Scholar 

  21. Stepacheva AA, Doluda VY, Lakina NV, Molchanov VP, Sidorov AI, Matveeva VG, Sulman MG, Sulman EM (2018) Correction to: Catalytic performance of the modified H-ZSM-5 zeolite in methanol transformation to hydrocarbons. Reac Kinet Mech Cat 124:823

    Article  CAS  Google Scholar 

  22. Yamamura M, Chaki K, Wakatsuki T, Okado H, Fujimoto K (1994) Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites 14:643–649

    Article  CAS  Google Scholar 

  23. Zhao X, Guo X, Wang X (2006) Characterization of modified nanoscale ZSM-5 catalyst and its application in FCC gasoline upgrading process. Energy Fuels 20:1388–1391

    Article  CAS  Google Scholar 

  24. Ren D, Wang X, Li G, Cheng X, Long H, Chen L (2010) Methane aromatization in the absence of oxygen over extruded and molded MoO3/ZSM-5 catalysts: influences of binder and molding method. J Nat Gas Chem 19:646–652

    Article  CAS  Google Scholar 

  25. Rownaghi AA, Rezaei F, Stante M, Hedlund J (2012) Selective dehydration of methanol to dimethyl ether on ZSM-5 nanocrystals. Appl Catal B 119–120:56–61

    Article  Google Scholar 

  26. Wang X, Hongchen G (1999) Direct synthesis of para-diethylbenzene over modified HZSM-5 zeolites. ACS Symp Ser 738:201–224

    Article  Google Scholar 

  27. Xiao Y, Fu J, Zhu H, Zhao Q, Zhou L (2022) Facile and controllable preparation of nanocrystalline ZSM-5 and Ag/ZSM-5 zeolite with enhanced performance of adsorptive desulfurization from fuel. Sep Purif Technol 288:120698

    Article  CAS  Google Scholar 

  28. Chen L, Wang X, Guo H, Guo X, Wang Y, Liu HO, Li G (2007) Hydroconversion of n-octane over nanoscale HZSM-5 zeolites promoted by 12-molybdophosphoric acid and Ni. Catal Commun 8:416–423

    Article  CAS  Google Scholar 

  29. Chen L, Wang X, Guo X, Guo H, Liu HO, Chen Y (2007) In situ nanocrystalline HZSM-5 zeolites encaged heteropoly acid H3PMo12O40 and Ni catalyst for hydroconversion of n-octane. Chem Eng Sci 62:4469–4478

    Article  CAS  Google Scholar 

  30. Jiang C, Wang D, Jiang K, Sun S, Miao Y, Zhan Z (2013) Preparation, structural characterization and catalytic performance of POMs/ZSM-5 composites. J Liaoning Normal Univ (Nat Sci Ed) 36:520–524 (in Chinese)

    CAS  Google Scholar 

  31. Jiang C, Sun S, Wang X, Wang X, Guo H, Guo X, Chen L (2013) Synthesis of dimethyl ether from methanol over heteropoly acid/nanocrystalline HZSM-5 complex solid acidic catalyst. Acta Chim Sinica 71:810–814

    Article  CAS  Google Scholar 

  32. Li Z, Shi Y, Liu D, Song S, Zhao L, Guo Y, Chen L, Wang X, Guo X, Cheng W (2021) Synthesis of Ni(ii)-phosphotungstic acid/nanocrystalline HZSM-5 catalyst for ultra clean gasoline in a single-stage reactor. New J Chem 45:14070–14081

    Article  CAS  Google Scholar 

  33. Wang X, Song P, Wang X, Guo X, Guo H, Yang X, Chen L, Jiang C (2014) In-situ characterization and reactivity of heteropoly acid-based catalysts for deep hydrodesulfurization of fluid catalytic cracking gasoline. Chin J Appl Chem 31:990–992

    CAS  Google Scholar 

  34. López-Benítez A, Guevara-Lara A, Berhault G (2019) Nickel-containing polyoxotungstates based on [PW9O34]9– and [PW10O39]13– Keggin lacunary anions supported on Al2O3 for dibenzothiophene hydrodesulfurization application. ACS Catal 9:6711–6727

    Article  Google Scholar 

  35. Liao L, Chen L, Ye RP, Tang X, Liu J (2021) Robust nickel silicate catalysts with high Ni loading for CO(2) methanation. Chem Asian J 16:678–689

    Article  CAS  PubMed  Google Scholar 

  36. Bi M, Song S, Li Z, Zhang B, Zhao L, Guo K, Li J, Chen L, Zhao Q, Cheng W, Wang X, Guo X (2022) In situ encapsulated molybdovanaphosphodic acid on modified nanosized TS-1 zeolite catalyst for deep oxidative desulfurization. Micropor Mesopor Mater 335:111799

    Article  CAS  Google Scholar 

  37. Wang S, Tong H, Li H, Shi X, Liu D, Li J, Guo K, Zhao L, Song S, Chen L, Cheng W, Wang X (2022) Synthesis of a phosphomolybdic acid/nanocrystalline titanium silicalite-1 catalyst in the presence of hydrogen peroxide for effective adsorption-oxidative desulfurization. New J Chem 46:2559–2568

    Article  CAS  Google Scholar 

  38. Bi M, Guo Y, Wang S, Zhang B, Jiang YN, Li H, Xu Q, Chen L, Zhao Q, Han N (2023) Titanium dioxide-modified nanosized TS-1 zeolite-supported phosphotungstic acid as a catalyst for deep catalytic oxidative desulfurization of fuel oil. New J Chem 47:12027–12036

    Article  CAS  Google Scholar 

  39. Rocchiccioli-Deltcheff C, Aouissi A, Bettahar MM, Launay S, Fournier M (1996) Catalysis by 12-molybdophosphates. J Catal 164:16–27

    Article  CAS  Google Scholar 

  40. Rocchiccioli-Deltcheff C, Aouissi A, Launay S, Fournier M (1996) Silica-supported 12-molybdophosphoric acid catalysts: influence of the thermal treatments and of the Mo contents on their behavior, from IR, Raman, X-ray diffraction studies, and catalytic reactivity in the methanol oxidation. J Mol Catal A 114:331–342

    Article  CAS  Google Scholar 

  41. Dufresne P, Payen E, Grimblot J, Bonnelle JP (2002) Study of nickel-molybdenum-.gamma.-aluminum oxide catalysts by x-ray photoelectron and Raman spectroscopy. Comparison with cobalt-molybdenum-.gamma.-aluminum oxide catalysts. J Phys Chem 85:2344–2351

    Article  Google Scholar 

  42. Jose Da Silva M, Vergara Torres JA, Vilanculo CB (2022) Vanadium-doped phosphomolybdic acids as catalysts for geraniol oxidation with hydrogen peroxide. RSC Adv 12:11796–11806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Zou Y, Sun Y, Hemgesberg M, Schaffner D, Gao H, Song X, Zhang W, Jia M, Thiel WR (2014) Electrostatic immobilization of phosphomolybdic acid on imidazolium-based mesoporous organosilicas for catalytic olefin epoxidation. Chin J Catal 35:532–539

    Article  CAS  Google Scholar 

  44. Drozdová L, Prins R, Dědeček J, Sobalík Z, Wichterlová B (2002) Bonding of Co ions in ZSM-5, ferrierite, and mordenite: an X-ray absorption, UV−Vis, and IR study. J Phys Chem B 106:2240–2248

    Article  Google Scholar 

  45. Fournier M, Feumi-Jantou C, Rabia C, Hervé G, Launay S (1992) Polyoxometalates catalyst materials: X-ray thermal stability study of phosphorus-containing heteropolyacids H3+xPM12–xVxO40·13–14H2O (M = Mo, W; x= 0–1). J Mater Chem 2:971–978

    Article  CAS  Google Scholar 

  46. M Fournier, A Aouissi, C Rocchiccioli-Deltcheff (1994) Evidence of β-MoO3 formation during thermal treatment of silica-supported 12-molybdophosphoric acid catalysts. J Chem Soc Chem Commun 307–308.

  47. Ma Z, Fu T, Wang Y, Shao J, Ma Q, Zhang C, Cui L, Li Z (2019) Silicalite-1 derivational desilication-recrystallization to prepare Hollow nano-ZSM-5 and highly mesoporous micro-ZSM-5 catalyst for methanol to hydrocarbons. Ind Eng Chem Res 58:2146–2158

    Article  CAS  Google Scholar 

  48. Datka J (1981) Dehydroxylation of NaHY zeolites studied by infrared spectroscopy. Faraday Trans 77:2877–2881

    Article  CAS  Google Scholar 

  49. Xu W, Chen B, Jiang X, Xu F, Chen X, Chen L, Wu J, Fu M, Ye D (2020) Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5: acidity/basicity, catalytic activity and reaction mechanism. J Hazard Mater 387:122004

    Article  CAS  PubMed  Google Scholar 

  50. Pan T, Ge S, Yu M, Ju Y, Zhang R, Wu P, Zhou K, Wu Z (2022) Synthesis and consequence of Zn modified ZSM-5 zeolite supported Ni catalyst for catalytic aromatization of olefin/paraffin. Fuel 311:122629

    Article  CAS  Google Scholar 

  51. Zecevic J, Vanbutsele G, De Jong KP, Martens JA (2015) Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kazansky VB (1999) Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons. Catal Today 51:419–434

    Article  CAS  Google Scholar 

  53. Smiekova A (2004) Aromatization of light alkanes over ZSM-5 catalysts. Influence of the particle properties of the zeolite. Appl Catal A 268:235–240

    Article  Google Scholar 

  54. Guisnet M, Gnep NS, Alario F (1992) Aromatization of short chain alkanes on zeolite catalysts. Appl Catal A 89:1–30

    Article  CAS  Google Scholar 

  55. Li Y, Liu S, Xie S, Xu L (2009) Promoted metal utilization capacity of alkali-treated zeolite: preparation of Zn/ZSM-5 and its application in 1-hexene aromatization. Appl Catal A 360:8–16

    Article  CAS  Google Scholar 

  56. Su X, Zan W, Bai X, Wang G, Wu W (2017) Synthesis of microscale and nanoscale ZSM-5 zeolites: effect of particle size and acidity of Zn modified ZSM-5 zeolites on aromatization performance. Catal Sci Technol 7:1943–1952

    Article  CAS  Google Scholar 

  57. Uslamin EA, Saito H, Sekine Y, Hensen EJM, Kosinov N (2021) Different mechanisms of ethane aromatization over Mo/ZSM-5 and Ga/ZSM-5 catalysts. Catal Today 369:184–192

    Article  CAS  Google Scholar 

  58. Alvarez F, Ribeiro FR, Perot G, Thomazeau C, Guisnet M (1996) Hydroisomerization and hydrocracking of alkanes. J Catal 162:179–189

    Article  CAS  Google Scholar 

  59. Wei C, Zhang G, Zhao L, Gao J, Xu C (2022) Effect of metal–acid balance and textual modifications on hydroisomerization catalysts for n-alkanes with different chain length: a mini-review. Fuel 315:122809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Project of the Education Department of Liaoning Province (No. LJKMZ22021404 and LF2019002) and China Postdoctoral Science Foundation (No. 20080441109).

Author information

Authors and Affiliations

Authors

Contributions

QX carried out data analysis and wrote the article. CC, XW and NZ carried out the experiment. LC, XW, BZ and DR designed the experiment and carried out data analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lidong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 302 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Cai, C., Wang, X. et al. Hydroconversion of n-octane over different MoO3 phase modified nanosized HZSM-5 zeolites. Reac Kinet Mech Cat 137, 825–842 (2024). https://doi.org/10.1007/s11144-024-02582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-024-02582-5

Keywords

Navigation