Skip to main content
Log in

Development of SO42−/ZnAl2O4–ZrO2 composite solid acids for efficient synthesis of green biofuels via the typical esterification reaction of oleic acid with methanol

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A novel series of SO42−/ZnAl2O4–ZrO2 composite solid acids for efficient synthesis of green biodiesel via the typical esterification reaction of oleic acid with methanol were prepared by a simple sol–gel-impregnation method. Their structures and acid properties were studied by means of XRD, FE-SEM, TG, NH3-TPD, XPS, FT-IR, NH3 adsorption FT-IR spectra and acid–base titration. The experimental results revealed that the addition of ZnAl2O4 was successfully achieved to stabilize the active tetragonal phase of ZrO2 in SO42−/ZnAl2O4–ZrO2 composite solid acids. Both ZnAl2O4 and ZrO2 acted as active components and participated in the formation of active acid center structure for SO42−/ZnAl2O4–ZrO2 composite solid acids. As a result, the comprehensive acidic properties of SO42−/ZnAl2O4–ZrO2 composite solid acids were effectively regulated by the mass ratio of ZnAl2O4 to ZrO2. Among them, SO42−/ZnAl2O4–ZrO2 (8:2) exhibited the highest catalytic activity and the better reusability in the esterification reaction of oleic acid with methanol, which might be ascribed to its supreme number of acid sites, its excellent structural stability and its better stability of the surface active sites. The kinetic and thermodynamic analysis demonstrated that SO42−/ZnAl2O4–ZrO2 (8:2) composite solid acid could effectively catalyze the synthesis of green biodiesel because of its relatively lower values of activation energy in the esterification reaction of oleic acid with methanol. The inevitable loss of sulfate species on the surface of SO42−/ZnAl2O4–ZrO2 (8:2) might be one of the major reasons for its slight deactivation during acid catalyzed esterification reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors approve the availability of the data in this publication.

References

  1. Daud NM, Sheikh Abdullah SR, Abu Hasan H, Yaakob Z (2015) Production of biodiesel and its wastewater treatment technologies: a review. Process Saf Environ 94:487–508. https://doi.org/10.1016/j.psep.2014.10.009

    Article  CAS  Google Scholar 

  2. Li Y, Zhang XD, Sun L, Xu M, Zhou WG, Liang XH (2010) Solid superacid catalyzed fatty acid methyl esters production from acid oil. Appl Energy 87:2369–2373. https://doi.org/10.1016/j.apenergy.2010.01.017

    Article  CAS  Google Scholar 

  3. Navas MB, Lick ID, Bolla PA, Casella ML, Ruggera JF (2018) Transesterification of soybean and castor oil with methanol and butanol using heterogeneous basic catalysts to obtain biodiesel. Chem Eng Sci 187:444–454. https://doi.org/10.1016/j.ces.2018.04.068

    Article  CAS  Google Scholar 

  4. Sronsri C, Sittipol W, U-yen K (2020) Optimization of biodiesel production using magnesium pyrophosphate. Chem Eng Sci 226:115884–115896. https://doi.org/10.1016/j.ces.2020.115884

    Article  CAS  Google Scholar 

  5. Ye J, Liu C, Fu Y, Peng S, Chang J (2014) Upgrading bio-oil: simultaneous catalytic esterification of acetic acid and alkylation of acetaldehyde. Energ Fule 28:4267–4272. https://doi.org/10.1021/ef500129x

    Article  CAS  Google Scholar 

  6. Shi WP, Li JW (2013) A new deactivation mechanism of sulfate-promoted iron oxide. Catal Lett 143:1285–1293. https://doi.org/10.1007/s10562-013-1066-7

    Article  CAS  Google Scholar 

  7. Shu Q, Tang G, Liu F, Zou W, He J, Zhang C, Zou L (2017) Study on the preparation, characterization of a novel solid Lewis acid Al3+-SO42-/MWCNTs catalyst and its catalytic performance for the synthesis of biodiesel via esterification reaction of oleic acid and methanol. Fuel 209:290–298. https://doi.org/10.1016/j.fuel.2017.07.113

    Article  CAS  Google Scholar 

  8. Wang L, Xiao FS (2015) Nanoporous catalysts for biomass conversion. Green Chem 17:24–39. https://doi.org/10.1039/c4gc01622j

    Article  Google Scholar 

  9. Huang CC, Yang CJ, Gao PJ, Wang NC, Chen CL, Chang JS (2015) Characterization of an alkaline earth metal-doped solid superacid and its activity for the esterification of oleic acid with methanol. Green Chem 17:3609–3620. https://doi.org/10.1039/c5gc00188a

    Article  CAS  Google Scholar 

  10. Cheng S, Wei L, Julson J, Muthukumarappan K, Kharel PR (2017) Upgrading pyrolysis bio-oil to hydrocarbon enriched biofuel over bifunctional Fe-Ni/HZSM-5 catalyst in supercritical methanol. Fuel Process Technol 167:117–126. https://doi.org/10.1016/j.fuproc.2017.06.032

    Article  CAS  Google Scholar 

  11. Mohd Laziz A, KuShaari K, Azeem B, Yusup S, Chin J, Denecke J (2020) Rapid production of biodiesel in a microchannel reactor at room temperature by enhancement of mixing behaviour in methanol phase using volume of fluid model. Chem Eng Sci 219:115532–115542. https://doi.org/10.1016/j.ces.2020.115532

    Article  CAS  Google Scholar 

  12. Chang BB, Guo YZ, Yin H, Zhang SR, Yang BC (2015) Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route. J Solid State Chem 221:384–390. https://doi.org/10.1016/j.jssc.2014.10.029

    Article  CAS  Google Scholar 

  13. Ravi A, Gurunathan B, Rajendiran N, Varjani S, Gnansounou E, Pandey A, You S, Raman JK, Ramanujam P (2020) Contemporary approaches towards augmentation of distinctive heterogeneous catalyst for sustainable biodiesel production. Environ Technol Inno 19:100906–100924. https://doi.org/10.1016/j.eti.2020.100906

    Article  Google Scholar 

  14. Hino M, Kobayashi S, Arata K (1979) Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst. J Am Chem Soc 101:6439–6441. https://doi.org/10.1021/ja00515a051

    Article  CAS  Google Scholar 

  15. Labidi S, Ben Amar M, Passarello JP, Le Neindre B, Kanaev A (2017) Design of novel sulfated nanozirconia catalyst for biofuel synthesis. Ind Eng Chem Res 56:1394–1403. https://doi.org/10.1021/acs.iecr.6b03448

    Article  CAS  Google Scholar 

  16. Zane F, Melada S, Signoretto M, Pinna F (2006) Active and recyclable sulphated zirconia catalysts for the acylation of aromatic compounds. Appl Catal A 299:137–144. https://doi.org/10.1016/j.apcata.2005.10.019

    Article  CAS  Google Scholar 

  17. Li XB, Nagaoka K, Simon LJ, Olindo R, Lercher JA, Hofmann A, Sauer J (2005) Oxidative activation of n-butane on sulfated zirconia. J Am Chem Soc 127:16159–16166. https://doi.org/10.1021/ja054126d

    Article  CAS  PubMed  Google Scholar 

  18. Xu D, Lai X, Guo W, Zhang X, Wang C, Dai P (2018) Efficient catalytic properties of SO42-/MxOy (M = Cu Co, Fe) catalysts for hydrogen generation by methanolysis of sodium borohydride. Int J Hydrogne Eng 43:6594–6602. https://doi.org/10.1016/j.ijhydene.2018.02.074

    Article  CAS  Google Scholar 

  19. Vasić K, Hojnik Podrepšek G, Knez Ž, Leitgeb M (2020) Biodiesel production using solid acid catalysts based on metal oxides. Catal 10:237–256. https://doi.org/10.3390/catal10020237

    Article  CAS  Google Scholar 

  20. Liu XX, Wang K, Liu BQ, Guo ZM, Zhang C, Lv ZG (2021) Novel WO3/SO42-ZrO2-TiO2 double bridge coordination catalyst hfor oxidation of cyclohexene. J Solid State Chem 300:122239–122246. https://doi.org/10.1016/j.jssc.2021.122239

    Article  CAS  Google Scholar 

  21. Liu P, Cao J, Xu Z, Yang C, Wang X, Liu F (2020) Thiolation of methanol with H2S using core-shell structured ZSM-5@t-ZrO2 catalyst. Chem Eng Sci 211:115273–115282. https://doi.org/10.1016/j.ces.2019.115273

    Article  CAS  Google Scholar 

  22. Chiang CL, Lin KS, Shu CW, Wu JCS, Wu KCW, Huang YT (2020) Enhancement of biodiesel production via sequential esterification/transesterification over solid superacidic and superbasic catalysts. Catal Today 348:257–269. https://doi.org/10.1016/j.cattod.2019.09.037

    Article  CAS  Google Scholar 

  23. Ibrahim MM, Mahmoud HR, El-Molla SA (2019) Influence of support on physicochemical properties of ZrO2 based solid acid heterogeneous catalysts for biodiesel production. Catal Commun 122:10–15. https://doi.org/10.1016/j.catcom.2019.01.008

    Article  CAS  Google Scholar 

  24. Sohn JR, Lee SH, Lim JS (2006) New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis. Catal Today 116:143–150. https://doi.org/10.1016/j.cattod.2006.01.023

    Article  CAS  Google Scholar 

  25. Yang H, Zhou Y, Tong D, Yang M, Fang K, Zhou C, Yu W (2020) Catalytic conversion of cellulose to reducing sugars over clay-based solid acid catalyst supported nanosized SO42-/ZrO2. Appl Clay Sci 185:105376–105383. https://doi.org/10.1016/j.clay.2019.105376

    Article  CAS  Google Scholar 

  26. Li XF, Ma WH, Bao GR, Lv GQ, Wan XH, Li QJ (2021) Effect of preparation parameters on the catalytic performance of solid acid catalyst SO42-/ZrO2-CeO2 in biodiesel production. Fuel Cells 21:119–125. https://doi.org/10.1002/fuce.202000185

    Article  CAS  Google Scholar 

  27. Xu X, Liu T, Xie P, Yue Y, Miao C, Hua W, Gao Z (2014) Enhanced catalytic performance over Fe2O3-doped Pt/SO42-/ZrO2 in n-heptane hydroisomerization. Catal Commun 54:77–80. https://doi.org/10.1016/j.catcom.2014.05.020

    Article  CAS  Google Scholar 

  28. Yu GX, Zhou XL, Li CL, Chen LF, Wang JA (2009) Esterification over rare earth oxide and alumina promoted SO42-/ZrO2. Catal Today 148:169–173. https://doi.org/10.1016/j.cattod.2009.03.006

    Article  CAS  Google Scholar 

  29. Dussadee R, Asama T, Sasikarn N, Wilasinee K, Vichai P, Anusith T, Maythee S, Penjit S (2021) Catalytic behavior of La2O3-promoted SO42−/ZrO2 in the simultaneous esterification and transesterification of palm oil. Sci Rep 7:5374–5385. https://doi.org/10.1016/j.egyr.2021.08.166

    Article  Google Scholar 

  30. Li C, Zhao Y, Dai B (2012) Study on SO42-/ZrO2-MoO3 in the integrative transformation of cottonseed oil deodorizing distillate. J Ind Eng Chem 18:520–525. https://doi.org/10.1016/j.jiec.2011.11.058

    Article  CAS  Google Scholar 

  31. Fan G, Shen M, Zhang Z, Jia F (2009) Preparation, characterization and catalytic properties of S2O82-/ZrO2-CeO2 solid superacid catalyst. J Rare Earth 27:437–442. https://doi.org/10.1016/S1002-0721(08)60266-5

    Article  Google Scholar 

  32. Wang Y, Wang D, Tan M, Jiang B, Zheng J, Tsubaki N, Wu M (2015) Monodispersed Hollow SO3H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid. Acs Appl Mater Inter 7:26767–26775. https://doi.org/10.1021/acsami.5b08797

    Article  CAS  Google Scholar 

  33. Pires LHO, De Oliveira AN, Jren OVMRS, Angélica Jr., CEFD Costa, JR Zamian LASD Nascimento GNRF Filho (2014) Esterification of a waste produced from the palm oil industry over 12-tungstophosforic acid supported on kaolin waste and mesoporous materials. Appl Catal B 160–161:122–128. https://doi.org/10.1016/j.apcatb.2014.04.039

    Article  CAS  Google Scholar 

  34. Veillette M, Giroir-Fendler A, Faucheux N, Heitz M (2017) Esterification of free fatty acids with methanol to biodiesel using heterogeneous catalysts: from model acid oil to microalgae lipids. Chem Eng J 308:101–109. https://doi.org/10.1016/j.cej.2016.07.061

    Article  CAS  Google Scholar 

  35. Liao Y, Huang X, Liao X, Shi B (2011) Preparation of fibrous sulfated zirconia (SO42-/ZrO2) solid acid catalyst using collagen fiber as the template and its application in esterification. J Mol Catal A 347:46–51. https://doi.org/10.1016/j.molcata.2011.07.009

    Article  CAS  Google Scholar 

  36. Zalewski DJ, Alerasool S, Doolin PK (1999) Characterization of catalytically active sulfated zirconia. Catal Today 53:419–432. https://doi.org/10.1016/S0920-5861(99)00137-6

    Article  CAS  Google Scholar 

  37. Jiang K, Tong D, Tang J, Song R, Hu C (2010) The Co-promotion effect of Mo and Nd on the activity and stability of sulfated zirconia-based solid acids in esterification. Appl Catal A 389:46–51. https://doi.org/10.1016/j.apcata.2010.08.062

    Article  CAS  Google Scholar 

  38. Ropero-Vega JL, Aldana-Pérez A, Gómez R, Niño-Gómez ME (2010) Sulfated titania [TiO2/SO42-]: a very active solid acid catalyst for the esterification of free fatty acids with ethanol. Appl Catal A-Gen 379:24–29. https://doi.org/10.1016/j.apcata.2010.02.020

    Article  CAS  Google Scholar 

  39. Saravanan K, Tyagi B, Shukla RS, Bajaj HC (2016) Solvent free synthesis of methyl palmitate over sulfated zirconia solid acid catalyst. Fuel 165:298–305. https://doi.org/10.1016/j.fuel.2015.10.043

    Article  CAS  Google Scholar 

  40. Saravanan K, Tyagi B, Shukla RS, Bajaj HC (2015) Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst. Appl Catal B 172–173:108–115. https://doi.org/10.1016/j.apcatb.2015.02.014

    Article  CAS  Google Scholar 

  41. Reddy PS, Sudarsanam P, Raju G, Reddy BM (2012) Selective acetylation of glycerol over CeO2-M and SO42-/CeO2-M (M=ZrO2 and Al2O3) catalysts for synthesis of bioadditives. J Ind Eng Chem 18:648–654. https://doi.org/10.1016/j.jiec.2011.11.063

    Article  CAS  Google Scholar 

  42. Busca G, Lorenzelli V, Ramis G, Willey RJ (1993) Surface sites on spinel-type and corundum-type metal-oxide powders. Langmuir 9:1492–1499. https://doi.org/10.1021/la00030a012

    Article  CAS  Google Scholar 

  43. Farhadi S, Panahandehjoo S (2010) Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: A novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions. Appl Catal A 382:293–302. https://doi.org/10.1016/j.apcata.2010.05.005

    Article  CAS  Google Scholar 

  44. Dos Santos VC, Wilson K, Lee AF, Nakagaki S (2015) Physicochemical properties of WOx/ZrO2 catalysts for palmitic acid esterification. Appl Catal B 162:75–84. https://doi.org/10.1016/j.apcatb.2014.06.036

    Article  CAS  Google Scholar 

  45. Li H, Fang Z, Luo J, Yang S (2017) Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Appl Catal B 200:182–191. https://doi.org/10.1016/j.apcatb.2016.07.007

    Article  CAS  Google Scholar 

  46. De Almeida RM, Souza FTC, Júnior MAC, Albuquerque NJA, Meneghetti SMP, Meneghetti MR (2014) Improvements in acidity for TiO2 and SnO2 via impregnation with MoO3 for the esterification of fatty acids. Catal Commun 46:179–182. https://doi.org/10.1016/j.catcom.2013.12.020

    Article  CAS  Google Scholar 

  47. Nakajima K, Hara M (2012) Amorphous carbon with SO3 groups as a solid bronsted acid catalyst. ACS Catal 2:1296–1304

    Article  CAS  Google Scholar 

  48. Yan Z, Fan J, Zuo Z, Li Z, Zhang J (2014) NH3 adsorption on the Lewis and Bronsted acid sites of MoO3 (010) surface: a cluster DFT study. Appl Sure Sci 288:690–694. https://doi.org/10.1016/j.apsusc.2013.10.105

    Article  CAS  Google Scholar 

  49. He YY, Ford M, Zhu M, Liu Q, Wu Z, Wachs IE (2016) Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl Catal B 193:141–150. https://doi.org/10.1016/j.apcatb.2016.04.022

    Article  CAS  Google Scholar 

  50. Wu YJ, Lin Q, Zhang, GL, Chen L, Guo XW, Liu M (2013) Porous solid superacid SO42-/Fe2-xZrxO3 fenton catalyst for highly effective oxidation of X-3B under visible light. Ind Eng Chem Res 52:16698–16708. https://doi.org/10.1021/ie402238s

    Article  CAS  Google Scholar 

  51. M.E. Manrı́quez, T. López, R. Gómez, J. Navarrete, (2004) Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties. J Mol Catal A 220:229–237. https://doi.org/10.1016/j.molcata.2004.06.003

    Article  CAS  Google Scholar 

  52. Wu T, Wan J, Ma X (2015) Aqueous asymmetric aldol reaction catalyzed by nanomagnetic solid acid SO42-/Zr(OH)4-Fe3O4. Chinese J Catal 36:425–431. https://doi.org/10.1016/S1872-2067(14)60222-9

    Article  CAS  Google Scholar 

  53. Witoon T, Permsirivanich T, Kanjanasoontorn N, Akkaraphataworn C, Seubsai A, Faungnawakij K, Warakulwit C, Chareonpanich M, Limtrakul J (2015) Direct synthesis of dimethyl ether from CO2 hydrogenation over Cu-ZnO-ZrO2/SO42- hybrid catalysts: effects of sulfur-to-zirconia ratios. Catal Sci Technol 5:2347–2357. https://doi.org/10.1039/c4cy01568a

    Article  CAS  Google Scholar 

  54. Zhao H, Bennici S, Shen J, Auroux A (2010) Nature of surface sites of V2O5-TiO2/SO42- catalysts and reactivity in selective oxidation of methanol to dimethoxymethane. J Catal 272:176–189. https://doi.org/10.1016/j.jcat.2010.02.028

    Article  CAS  Google Scholar 

  55. Duan XL, Yuan DR, Yu FP (2011) Cation distribution in Co-doped ZnAl2O4 nanoparticles studied by X-ray photoelectron spectroscopy and Al-27 solid-state NMR spectroscopy. Inorg Chem 50:5460–5467. https://doi.org/10.1021/ic200433r

    Article  CAS  PubMed  Google Scholar 

  56. Reddy BM, Sreekanth PM, Yamada Y, Kobayashi T (2005) Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3-ZrO2 solid acid catalysts. J Mol Catal A 227:81–89. https://doi.org/10.1016/j.molcata.2004.10.011

    Article  CAS  Google Scholar 

  57. Ma D, Xin Y, Gao M, Wu J (2014) Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning. Appl Catal B 147:49–57. https://doi.org/10.1016/j.apcatb.2013.08.004

    Article  CAS  Google Scholar 

  58. Berrios M, Siles J, Martin M, Martin A (2007) A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel 86:2383–2388. https://doi.org/10.1016/j.fuel.2007.02.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 2021033144), State Key Laboratory of Inorganic Synthesis and Preparation Chemistry (Jilin University) Open Project (No. 2020-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxia Wang.

Ethics declarations

Competing interest

The authors have no competing interests. All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2134 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, A., Liao, Y. et al. Development of SO42−/ZnAl2O4–ZrO2 composite solid acids for efficient synthesis of green biofuels via the typical esterification reaction of oleic acid with methanol. Reac Kinet Mech Cat 136, 2123–2145 (2023). https://doi.org/10.1007/s11144-023-02439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02439-3

Keywords

Navigation