Skip to main content
Log in

Metal–organic framework-derived carbon coated Ni–In intermetallic compounds for in-situ selective hydrogenation of methyl palmitate to hexadecanol in aqueous phase using methanol as hydrogen donor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of NixIny-BTC metal organic frameworks (x/y denotes the Ni/In atomic ratio) were prepared through the solvothermal method, and then carbonized at 400–700 °C in a N2 flow followed by the H2 reduction at 550 °C to prepare carbon-coated Ni–In IMCs catalysts. It has been found that the H2 reduction is favorable for the formation of Ni–In IMCs and the Ni–In IMCs phases in NixIny@C are determined by the Ni/In atomic ratio. Interestingly, a thin layer of carbon (~ 2 nm) coats the Ni–In IMC particles. NiIn3C0.5 IMC forms in Ni2In1@C, and its crystallite size increases with carbonization temperature. In addition, raising the carbonization temperature promotes the degree of graphitization. In in-situ aqueous phase selective hydrogenation of methyl palmitate to hexadecanol using methanol as hydrogen donor, all the NiIn3C0.5 IMC, NiIn IMC and Ni2In3 IMC dominatingly give hexadecanol, however, Ni2In3 IMC is hydrothermally unstable. Therein, Ni2In1@C carbonized at 600 °C (i.e., Ni2In1@C-600/550) exhibits the best performance with the hexadecanol yield of 90.3%, and the hexadecanol yield maintains ~ 90% during 5 times recycling. Such high activity and stability are ascribed to stable NiIn3C0.5 IMC phase, thin carbon layer and suitable degree of graphitization in Ni2In1@C-600/550.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

There is no additional data available. All other data are available from the authors upon reasonable request.

References

  1. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  PubMed  Google Scholar 

  2. Kim S, Kwon EE, Kim YT, Jung S, Kim HJ, Huber GW, Lee J (2019) Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem 21:3715–3743

    Article  CAS  Google Scholar 

  3. Santillan-Jimenez E, Crocker M (2012) Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation. J Chem Technol Biotechnol 87:1041–1050

    Article  CAS  Google Scholar 

  4. Donnis B, Egeberg RG, Blom P, Knudsen KG (2009) Hydroprocessing of bio-oils and oxygenates to hydrocarbons. understanding the reaction routes. Top Catal 52:229–240

    Article  CAS  Google Scholar 

  5. Kreutzer UR (1984) Manufacture of fatty alcohols based on natural fats and oils. J Am Oil Chem Soc 61:343–348

    Article  CAS  Google Scholar 

  6. Turek T, Trimm D, Cant N (1994) The catalytic hydrogenolysis of esters to alcohols. Catal Rev 36:645–683

    Article  CAS  Google Scholar 

  7. Voeste T, Buchold H (1984) Production of fatty alcohols from fatty acids. J Am Oil Chem Soc 61:350–352

    Article  CAS  Google Scholar 

  8. Snare M, Kubickova I, Maki-Arvela P, Eranen K, Murzin DY (2006) Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 45:5708–5715

    Article  Google Scholar 

  9. Kong XQ, Fang ZF, Bao XB, Wang Z, Mao SJ, Wang Y (2018) Efficient hydrogenation of stearic acid over carbon coated Ni–Fe catalyst. J Catal 367:139–149

    Article  CAS  Google Scholar 

  10. Wang L, Niu X, Chen J (2020) SiO2 supported Ni–In intermetallic compounds: efficient for selective hydrogenation of fatty acid methyl esters to fatty alcohols. Appl Catal B-Environ 278:119293

    Article  CAS  Google Scholar 

  11. Dominguez-Barroso V, Herrera C, Larrubia MA, Alemany LJ (2019) Coupling of glycerol-APR and in situ hydrodeoxygenation of fatty acid to produce hydrocarbons. Fuel Process Technol 190:21–28

    Article  CAS  Google Scholar 

  12. Ai L, Shi YT, Han YJ, Chen JX (2021) In situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons on Ni catalyst derived from the reduction of LaNiO3 perovskite. React Kinet Mech Cat 133:209–227

    Article  CAS  Google Scholar 

  13. Gou X, Okejiri F, Zhang ZH, Liu MM, Liu JX, Chen H, Chen KQ, Lu XY, Ouyang PK, Fu J (2020) Tannin-derived bimetallic CuCo/C catalysts for an efficient in-situ hydrogenation of lauric acid in methanol-water media. Fuel Process Technol 205:10

    Article  Google Scholar 

  14. Zhang J, Huo X, Li Y, Strathmann TJ (2019) Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C. ACS Sustain Chem Eng 7:14400–14410

    Article  CAS  Google Scholar 

  15. Lange JP (2015) Renewable feedstocks: the problem of catalyst deactivation and its mitigation. Angew Chem Int Ed 54:13186–13197

    Article  CAS  Google Scholar 

  16. Ravenelle RM, Schüβler F, D’Amico A, Danilina N, Van Bokhoven JA, Lercher JA, Jones CW, Sievers C (2010) Stability of zeolites in hot liquid water. J Phys Chem C 114:19582–19595

    Article  CAS  Google Scholar 

  17. Zhang ZH, Chen H, Wang CX, Chen KQ, Lu XY, Ouyang PK, Fu J (2018) Efficient and stable Cu–Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor. Fuel 230:211–217

    Article  CAS  Google Scholar 

  18. Wei J, Wang G, Chen F, Bai M, Liang Y, Wang HT, Zhao DY, Zhao YX (2018) Sol-Gel synthesis of metal-phenolic coordination spheres and their derived carbon composites. Angew Chem Int Ed 57:9838–9843

    Article  CAS  Google Scholar 

  19. Wang Q, Li H, Chen LQ, Huang XJ (2001) Monodispersed hard carbon spherules with uniform nanopores. Carbon 39:2211–2214

    Article  CAS  Google Scholar 

  20. Sun XM, Li YD (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43:597–601

    Article  Google Scholar 

  21. Yang WP, Li XX, Li Y, Zhu RM, Pang H (2019) Applications of metal-organic-framework-derived carbon materials. Adv Mater 31:35

    Google Scholar 

  22. Shi YT, Ai L, Shi HN, Gu XY, Han YJ, Chen JX (2022) Carbon-coated Ni–Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor. Front Chem Sci Eng 16:443–460

    Article  CAS  Google Scholar 

  23. Shi HN, Gu XY, Shi YT, Wang DD, Shu SH, Wang ZZ, Chen JX (2023) Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni–Sn intermetallic compounds with methanol as hydrogen donor. Front Chem Sci Eng 17:139–155

    Article  CAS  Google Scholar 

  24. Gu X, Shi H, Wang D, Chen J (2022) Glucose-derived carbon-coated Ni–In intermetallic compounds for in situ aqueous phase selective hydrogenation of methyl palmitate to hexadecanol. React Kinet Mech Cat 135:1621–1634

    Article  CAS  Google Scholar 

  25. Indra A, Song T, Paik U (2018) Metal organic framework derived materials: progress and prospects for the energy conversion and storage. Adv Mater 30:25

    Article  Google Scholar 

  26. Li XX, Zheng SS, Jin L, Li Y, Geng PB, Xue HG, Pang H, Xu Q (2018) Metal-organic framework-derived carbons for battery applications. Adv Energy Mater 8:25

    Google Scholar 

  27. Chen LY, Wang HF, Li CX, Xu Q (2020) Bimetallic metal-organic frameworks and their derivatives. Chem Sci 11:5369–5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian FP, Ru QF, Qiao CX, Sun X, Jia CY, Wang Y, Zhang YF (2019) Adsorption desulfurization of model gasoline by metal-organic framework Ni3(BTC)2. J Energy Chem 32:8–14

    Article  Google Scholar 

  29. Israr F, Chun D, Kim Y, Kim DK (2016) High yield synthesis of Ni-BTC metal-organic framework with ultrasonic irradiation: role of polar aprotic DMF solvent. Ultrason Sonochem 31:93–101

    Article  CAS  PubMed  Google Scholar 

  30. Dou ZS, Yu JC, Xu H, Cui YJ, Yang Y, Qian GD (2013) Facile preparation of continuous indium metal-organic framework thin films on indium tin oxide glass. Thin Solid Films 544:296–300

    Article  CAS  Google Scholar 

  31. Volkringer C, Loiseau T (2006) A new indium metal-organic 3D framework with 1,3,5-benzenetricarboxylate, MIL-96 (In), containing μ3-oxo-centered trinuclear units and a hexagonal 18-ring network. Mater Res Bull 41:948–954

    Article  CAS  Google Scholar 

  32. Liu P, Chen CZ, Zhou MH, Xu JM, Xia HH, Shang SB, Jiang JC (2021) Metal-organic framework-derived Ni-based catalyst for the hydrotreatment of triolein into green diesel. Sustain Energ Fuels 5:1809–1820

    Article  CAS  Google Scholar 

  33. Chinthaginjala JK, Bitter JH, Lefferts L (2010) Thin layer of carbon-nano-fibers (CNFs) as catalyst support for fast mass transfer in hydrogenation of nitrite. Appl Catal A 383:24–32

    Article  CAS  Google Scholar 

  34. Kim HC, Huh S (2020) Porous carbon-based supercapacitors directly derived from metal-organic frameworks. Materials 13:74

    Article  Google Scholar 

  35. Zhang C, Liao P, Wang H, Sun J, Gao P (2018) Preparation of novel bimetallic CuZn-BTC coordination polymer nanorod for methanol synthesis from CO2 hydrogenation. Mater Chem Phys 215:211–220

    Article  Google Scholar 

  36. Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X (2016) A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:8

    Article  Google Scholar 

  37. Aijaz A, Masa J, Rosler C, Xia W, Weide P, Botz AJR, Fischer RA, Schuhmann W, Muhler M (2016) Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew Chem Int Ed Engl 55:4087–4091

    Article  CAS  PubMed  Google Scholar 

  38. Xia W, Zhu JH, Guo WH, An L, Xia DG, Zou RQ (2014) Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J Mater Chem A 2:11606–11613

    Article  CAS  Google Scholar 

  39. Qian YH, Hu ZG, Ge XM, Yang SL, Peng YW, Kang ZX, Liu ZL, Lee JY, Zhao D (2017) A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon 111:641–650

    Article  CAS  Google Scholar 

  40. Miao C, Marin-Flores O, Dong T, Gao DF, Wang Y, Garcia-Perez M, Chen SL (2018) Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2. ACS Sustain Chem Eng 6:4521

    Article  CAS  Google Scholar 

  41. Miao C, Marin-Flores O, Davidson SD, Li TT, Dong T, Gao DF, Wang Y, Garcia-Perez M, Chen SL (2016) Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst. Fuel 166:302–308

    Article  CAS  Google Scholar 

  42. Yeh TM, Hockstad RL, Linic S, Savage PE (2015) Hydrothermal decarboxylation of unsaturated fatty acids over PtSnx/C catalysts. Fuel 156:219–224

    Article  CAS  Google Scholar 

  43. Yao XY, Strathmann TJ, Li YL, Cronmiller LE, Ma HL, Zhang J (2021) Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons: a review. Green Chem 23:1114–1129

    Article  CAS  Google Scholar 

  44. Yang Y, Dong H, Wang Y, He C, Wang Y, Zhang X (2018) Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. J Solid State Chem 258:582–587

    Article  CAS  Google Scholar 

  45. Mondal S, Singuru R, Shit SC, Hayashi T, Irle S, Hijikata Y, Mondal J, Bhaumik A (2018) Ruthenium nanoparticle-decorated porous organic network for direct hydrodeoxygenation of long-chain fatty acids to alkanes. ACS Sustain Chem Eng 6:1610–1619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (Nos. 21576193 and 21176177)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6654 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shi, H., Shu, S. et al. Metal–organic framework-derived carbon coated Ni–In intermetallic compounds for in-situ selective hydrogenation of methyl palmitate to hexadecanol in aqueous phase using methanol as hydrogen donor. Reac Kinet Mech Cat 136, 2021–2037 (2023). https://doi.org/10.1007/s11144-023-02435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02435-7

Keywords

Navigation