Skip to main content
Log in

Grinding synthesis of SAPO-18 zeolite by a single/dual-template route: which is the best catalyst of methanol-to-olefins reaction?

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, different templates (DIEA: N,N-diisopropylethylamine; TEAOH: tetraethylammonium hydroxide; DEA: diethylamine) were selected to conduct the grinding synthesis of SAPO-18 molecular sieves. The physicochemical properties of the synthesized SAPO-18 samples were thoroughly analyzed by XRD, CHN elemental measurements, TG, 13C NMR, SEM, EDS, N2 adsorption/desorption, and NH3-TPD experiments. The results show that SAPO-18 molecular sieves with better phase purity are synthesized only at the molar ratios of DIEA/TEAOH = 0.5/0.5 and DIEA/DEA = 0.9/0.1 for the dual template systems. The 13C NMR measurement indicates that the actual template is TEAOH for the sample SP18-DIEA0.5TEAOH0.5 instead of the mixture of TEAOH and DIEA. SEM, N2 adsorption/desorption, and NH3-TPD results suggest that the crystal size, textural parameters, and acidic properties of these SAPO-18 samples vary with the types of template molecules. The catalytic performances of three representative SAPO-18 catalysts were evaluated in the methanol-to-olefins (MTO) reaction. Owing to its unique sheet-like morphology and suitable acidity, the sample SP18-DIEA0.5TEAOH0.5 exhibits the best catalytic performances in the MTO reaction, giving the longest catalytic lifetime of 430 min and ethylene plus propylene selectivity of 86%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Corma A, Mengual J, Miguel PJ (2012) Steam catalytic cracking of naphtha over ZSM-5 zeolite for production of propene and ethene: Micro and macroscopic implications of the presence of steam. Appl Catal A-Gen 417:220–235

    Article  Google Scholar 

  2. Tian P, Wei YX, Ye M, Liu ZM (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5(3):1922–1938

    Article  CAS  Google Scholar 

  3. Wang W, Buchholz A, Seiler M, Hunger M (2003) Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. J Am Chem Soc 125(49):15260–15267

    Article  CAS  PubMed  Google Scholar 

  4. Bleken F, Bjorgen M, Palumbo L, Bordiga S, Svelle S, Lillerud K-P, Olsbye U (2009) The effect of acid strength on the conversion of methanol to olefins over acidic microporous catalysts with the cha topology. Top Catal 52(3):218–228

    Article  CAS  Google Scholar 

  5. Zhao X, Niu L, Hao Z, Long X, Wang D, Li G (2021) Sodium persulfate promoted interzeolite transformation of USY into SSZ-13 via a solid-state grinding route and its enhanced catalytic lifetime in the methanol-to-olefins reaction. React Kinet Mech Catal 134(2):837–849

    Article  CAS  Google Scholar 

  6. Wen MT, Ren L, Zhang JY, Jiang JA, Xu H, Guan YJ, Wu P (2021) Designing SAPO-18 with energetically favorable tetrahedral Si ions for an MTO reaction. Chem Commun 57(46):5682–5685

    Article  CAS  Google Scholar 

  7. Xie JX, Firth DS, Cordero-Lanzac T, Airi A, Negri C, Oien-Odegaard S, Lillerud KP, Bordiga S, Olsbye U (2022) MAPO-18 catalysts for the methanol to olefins process: influence of catalyst acidity in a high-pressure syngas (CO and H-2) environment. ACS Catal 12(2):1520–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Wright PA, Thomas JM, Natarajan S, Marchese L, Bradley SM, Sankar G, Catlow CRA, Gai-Boyes PL (1994) SAPO-18 catalysts and their broensted acid sites. J Phys Chem 98(40):10216–10224

    Article  CAS  Google Scholar 

  9. Alvaro-Munoz T, Marquez-Alvarez C, Sastre E (2016) Mesopore-modified SAPO-18 with potential use as catalyst for the MTO reaction. Top Catal 59(2–4):278–291

    Article  CAS  Google Scholar 

  10. Zhong JW, Han JF, Wei YX, Xu ST, Sun TT, Zeng S, Guo XW, Song CS, Liu ZM (2019) Tuning the product selectivity of SAPO-18 catalysts in MTO reaction via cavity modification. Chin J Catal 40(4):477–485

    Article  CAS  Google Scholar 

  11. Wragg DS, Akporiaye D, Fjellvag H (2011) Direct observation of catalyst behaviour under real working conditions with X-ray diffraction: comparing SAPO-18 and SAPO-34 methanol to olefin catalysts. J Catal 279(2):397–402

    Article  CAS  Google Scholar 

  12. Wendelbo R, Akporiaye D, Andersen A, Dahl IM, Mostad HB (1996) Synthesis, characterization and catalytic testing of SAPO-18, MgAPO-18, and ZnAPO-18 in the MTO reaction. Appl Catal A 142(2):L197–L207

    Article  CAS  Google Scholar 

  13. Chen J, Thomas JM, Wright PA, Townsend RP (1994) Silicoaluminophosphate number eighteen (SAPO-18): a new microporous solid acid catalyst. Catal Lett 28(2):241–248

    Article  CAS  Google Scholar 

  14. Hirota Y, Yamada M, Uchida Y, Sakamoto Y, Yokoi T, Nishiyama N (2016) Synthesis of SAPO-18 with low acidic strength and its application in conversion of dimethylether to olefins. Microporous Mesoporous Mater 232:65–69

    Article  CAS  Google Scholar 

  15. Wu Q, Meng X, Gao X, Xiao F-S (2018) Solvent-free synthesis of zeolites: mechanism and utility. Acc Chem Res 51(6):1396–1403

    Article  CAS  PubMed  Google Scholar 

  16. Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao F-S (2012) Solvent-free synthesis of zeolites from solid raw materials. J Am Chem Soc 134(37):15173–15176

    Article  CAS  PubMed  Google Scholar 

  17. Jin Y, Sun Q, Qi G, Yang C, Xu J, Chen F, Meng X, Deng F, Xiao F-S (2013) Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed 52(35):9172–9175

    Article  CAS  Google Scholar 

  18. Liu Y, Lyu Y, Zhao X, Xu L, Mintova S, Yan Z, Liu X (2018) Silicoaluminophosphate-11 (SAPO-11) molecular sieves synthesized via a grinding synthesis method. Chem Commun 54(78):10950–10953

    Article  CAS  Google Scholar 

  19. Martinez-Franco R, Li ZB, Martinez-Triguero J, Moliner M, Corma A (2016) Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catal Sci Technol 6(8):2796–2806

    Article  CAS  Google Scholar 

  20. Konnov SV, Pavlov VS, Ivanova II (2020) Effect of coating with silica on acidic and catalytic properties of SAPO-18 in MTO conversion. Microporous Mesoporous Mater 300:110158

    Article  CAS  Google Scholar 

  21. Nazari M, Behbahani RM, Moradi G, Lemraski AS (2016) A facile synthesis route for modifying the catalytic performance of SAPO-18 in MTO process. J Porous Mater 23(4):1037–1046

    Article  CAS  Google Scholar 

  22. Ono K, Miyake K, Nakai M, Al Jabri H, Hirota Y, Uchida Y, Tanaka S, Miyamoto M, Nishiyama N (2017) Development of AEI type germanoaluminophosphate (GeAPO-18) with ultra-weak acid sites and its catalytic properties for the methanol to olefin (MTO) reaction. Catal Sci Technol 7(20):4622–4628

    Article  CAS  Google Scholar 

  23. Yao J, Tian H, Zha F, Ma S, Tang X, Chang Y, Guo X (2021) Regulating the size and acidity of SAPO-34 zeolites using dual templates to enhance the selectivity of light olefins in MTO. New J Chem 45(26):11812–11822

    Article  CAS  Google Scholar 

  24. Chae H-J, Park I-J, Song Y-H, Jeong K-E, Kim C-U, Shin C-H, Jeong S-Y (2010) Physicochemical characteristics of SAPO-34 molecular sieves synthesized with mixed templates as MTO catalysts. J Nanosci Nanotechnol 10(1):195–202

    Article  CAS  PubMed  Google Scholar 

  25. Zhao D, Zhang Y, Li Z, Wang Y, Yu J (2017) Synthesis of AEI/CHA intergrowth zeolites by dual templates and their catalytic performance for dimethyl ether to olefins. Chem Eng J 323:295–303

    Article  CAS  Google Scholar 

  26. Zhao X, Chen J, Sun Z, Li A, Li G, Wang X (2013) Formation mechanism and catalytic application of hierarchical structured FeAlPO-5 molecular sieve by microwave-assisted ionothermal synthesis. Microporous Mesoporous Mater 182:8–15

    Article  CAS  Google Scholar 

  27. Alvaro-Munoz T, Marquez-Alvarez C, Sastre E (2014) Aluminium chloride: a new aluminium source to prepare SAPO-34 catalysts with enhanced stability in the MTO process. Appl Catal A-Gen 472:72–79

    Article  CAS  Google Scholar 

  28. Chen J, Li J, Yuan C, Xu S, Wei Y, Wang Q, Zhou Y, Wang J, Zhang M, He Y, Xu S, Liu Z (2014) Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18. Catal Sci Technol 4(9):3268–3277

    Article  CAS  Google Scholar 

  29. Li Z, Martinez-Triguero J, Yu J, Corma A (2015) Conversion of methanol to olefins: stabilization of nanosized SAPO-34 by hydrothermal treatment. J Catal 329:379–388

    Article  CAS  Google Scholar 

  30. Groen JC, Peffer LAA, Pérez-Ramı́rez J (2003) Pore size determination in modified micro and mesoporous materials Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60(1):1–17

    Article  CAS  Google Scholar 

  31. Nazari M, Moradi G, Behbahani RM, Ghavipour M, Abdollahi S (2015) Preparation and evaluation of the modified nanoparticle SAPO-18 for catalytic conversion of methanol to light olefins. Catal Lett 145(10):1893–1903

    Article  CAS  Google Scholar 

  32. Ye L, Cao F, Ying W, Fang D, Sun Q (2011) Effect of different TEAOH/DEA combinations on SAPO-34’s synthesis and catalytic performance. J Porous Mater 18(2):225–232

    Article  CAS  Google Scholar 

  33. Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R (2002) Crystallization and Si incorporation mechanisms of SAPO-34. Microporous Mesoporous Mater 53(1):97–108

    Article  CAS  Google Scholar 

  34. Sun C, Wang Y, Chen H, Wang X, Wang C, Zhang X (2020) Seed-assisted synthesis of hierarchical SAPO-18/34 intergrowth and SAPO-34 zeolites and their catalytic performance for the methanol-to-olefin reaction. Catal Today 355:188–198

    Article  CAS  Google Scholar 

  35. Bleken F, Bjørgen M, Palumbo L, Bordiga S, Svelle S, Lillerud K-P, Olsbye U (2009) The effect of acid strength on the conversion of methanol to olefins over acidic microporous catalysts with the CHA topology. Top Catal 52(3):218–228

    Article  CAS  Google Scholar 

  36. Chen D, Moljord K, Fuglerud T, Holmen A (1999) The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater 29(1):191–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21666019, 22168022)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 295 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Li, Y., Long, X. et al. Grinding synthesis of SAPO-18 zeolite by a single/dual-template route: which is the best catalyst of methanol-to-olefins reaction?. Reac Kinet Mech Cat 135, 3085–3098 (2022). https://doi.org/10.1007/s11144-022-02295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02295-7

Keywords

Navigation