Skip to main content
Log in

Semiconducting properties of CuBi2O4 prepared at low temperature: application to oxygen evolution under visible light

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The spinel CuBi2O4 was synthesized by a facile step using the co-precipitation at low temperature (140 °C) for the first time. The physical properties of the synthesized oxide such as functionality, morphology and optic were characterized by the FT-IR, XRD and UV–Visible analysis. The diffuse reflectance gives a direct optical gap of 1.77 eV, a further indirect transition was also determined. The conduction mechanism is assigned to the low polaron lattice and curiously, CuBi2O4 acts as n-type semiconductor unlike other spinels. The potentials of the electronic bands are determined by photo-electrochemistry, which predicts the interfacial reactions on the spinel. A flat band potential of 0.38 VSCE was determined from the capacitance measurement in Na2SO4 (0.1 M) medium. According to the capacitance measurement, the valence band (1.95 VSCE) is more anodic than the O2/H2O level (∼ 0.65 VSCE) at pH ~ 7. Therefore, oxygen is spontaneously evolved on the junction spinel/Na2SO4 electrolyte under visible light, due to the low O2 overvoltage. A quantum conversion efficiency of 5% is obtained within 14 min under visible light (6.28 × 1016 photons s−1), with an average rate O2 evolution of 75 µmol g−1 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20(1):35–54

    Article  CAS  Google Scholar 

  2. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Article  CAS  PubMed  Google Scholar 

  3. Kudo A (2011) Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull 36(1):32–38

    Article  CAS  Google Scholar 

  4. Maeda K (2013) Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3(7):1486–1503

    Article  CAS  Google Scholar 

  5. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535

    Article  CAS  PubMed  Google Scholar 

  6. Fabian DM, Hu S, Singh N, Houle FA, Hisatomi T, Domen K, Ardo S et al (2015) Particle suspension reactors and materials for solar-driven water splitting. Energy Environ Sci 8(10):2825–2850

    Article  CAS  Google Scholar 

  7. Moriya M, Minegishi T, Kumagai H, Katayama M, Kubota J, Domen K (2013) Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. J Am Chem Soc 135(10):3733–3735

    Article  CAS  PubMed  Google Scholar 

  8. Rovelli L, Tilley SD, Sivula K (2013) Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. ACS Appl Mater Interfaces 5(16):8018–8024

    Article  CAS  PubMed  Google Scholar 

  9. Ochiai T, Fujishima A (2012) Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J Photochem Photobiol, C 13(4):247–262

    Article  CAS  Google Scholar 

  10. Dyer CK, Moseley PT, Ogumi Z, Rand DA, Scrosati B (eds) (2009) Encyclopedia of electrochemical power sources. Elsevier Science & Technology, Amserdam

    Google Scholar 

  11. Kibria MG, Zhao S, Chowdhury FA, Wang Q, Nguyen HPT, Trudeau ML, Mi Z et al (2014) Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting. Nat Commun 5(1):1–6

    Article  Google Scholar 

  12. Boettcher SW, Warren EL, Putnam MC, Santori EA, Turner-Evans D, Kelzenberg MD, Lewis NS et al (2011) Photoelectrochemical hydrogen evolution using Si microwire arrays. J Am Chem Soc 133(5):1216–1219

    Article  CAS  PubMed  Google Scholar 

  13. Berglund SP, Abdi FF, Bogdanoff P, Chemseddine A, Friedrich D, van de Krol R (2016) Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem Mater 28(12):4231–4242

    Article  CAS  Google Scholar 

  14. Joshi UA, Maggard PA (2012) CuNb3O8: a p-type semiconducting metal oxide photoelectrode. J Phys Chem Lett 3(11):1577–1581

    Article  CAS  PubMed  Google Scholar 

  15. Gurunathan K, Baeg JO, Lee SM, Subramanian E, Moon SJ, Kong KJ (2008) Visible light active pristine and Fe3+ doped CuGa2O4 spinel photocatalysts for solar hydrogen production. Int J Hydrog Energy 33(11):2646–2652

    Article  CAS  Google Scholar 

  16. Wang D, Zou Z, Ye J (2003) A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chem Phys Lett 373(1–2):191–196

    Article  CAS  Google Scholar 

  17. Son N, Lee J, Yoon T, Kang M (2021) Design for a longer photoinduced charge separation and improved visible-light-driven H2 generation through structure reversal and oxygen vacancies via Ni substitution into ZnFe2O4 spinel. Ceram Int 47(14):20317–20334

    Article  CAS  Google Scholar 

  18. Imranullah M, Hussain T, Ahmad R, Shuaib U (2022) Spinel nickel cobaltite nanoflakes anchored multiwalled carbon nanotubes driven photocatalyst for highly efficient degradation of organic pollutants using natural sunlight irradiation. Ceram Int 48(1):313–319

    Article  CAS  Google Scholar 

  19. Dhiman P, Mehta T, Kumar A, Sharma G, Naushad M, Ahamad T, Mola GT (2020) Mg0.5NixZn0.5-xFe2O4 spinel as a sustainable magnetic nano-photocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of reactive blue-19. Adv Powder Technol 31(12):4585–4597

    Article  CAS  Google Scholar 

  20. Van Tran C, La DD, Hoai PNT, Ninh HD, Hong PNT, Vu THT, Ngo HH et al (2021) New TiO2-doped Cu–Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater. J Hazard Mater 420:126636

    Article  CAS  PubMed  Google Scholar 

  21. Ciocarlan RG, Seftel EM, Gavrila R, Suchea M, Batuk M, Mertens M, Cool P et al (2020) Spinel nanoparticles on stick-like Freudenbergite nanocomposites as effective smart-removal photocatalysts for the degradation of organic pollutants under visible light. J Alloys Compd 820:153403

    Article  CAS  Google Scholar 

  22. Chang S, Hu Y, Qian J, Shao Y, Ni S, Kong L, Xu X et al (2021) Mg2TiO4 spinel modified by nitrogen doping as a visible-light-active photocatalyst for antibacterial activity. Chem Eng J 410:128410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. George M, Ajeesha TL, Manikandan A, Anantharaman A, Jansi RS, Kumar ER, Baykal A (2021) Evaluation of Cu–MgFe2O4 spinel nanoparticles for photocatalytic and antimicrobial activates. J Phys Chem Solids 153:110010

    Article  CAS  Google Scholar 

  24. Shawky A, Albukhari SM, Tashkandi NY, Zaki ZI (2021) Sol–gel synthesis of photoactive Ag2O/Y3Fe5O12 nanojunctions for promoted degradation of ciprofloxacin under visible light. Appl Nanosci 11(7):2103–2112

    Article  CAS  Google Scholar 

  25. Akika FZ, Benamira M, Lahmar H, Trari M, Avramova I, Suzer Ş (2020) Structural and optical properties of Cu-doped ZnAl2O4 and its application as photocatalyst for Cr (VI) reduction under sunlight. Surf Interfaces 18:100406

    Article  CAS  Google Scholar 

  26. Wang Yi, Jixiang Xu, Wan J, Wang J, Wang L (2022) A tube-like dual Z-scheme indium oxide@indium phosphide/cuprous oxide photocatalyst based on metal–organic framework for efficient CO2 reduction with water. J Colloid Interface Sci 616:532–539

    Article  CAS  PubMed  Google Scholar 

  27. Abdulkarem AM, Li J, Aref AA, Ren L, Elssfah EM, Wang H, Yu Y et al (2011) CuBi2O4 single crystal nanorods prepared by hydrothermal method: growth mechanism and optical properties. Mater Res Bull 46(9):1443–1450

    Article  CAS  Google Scholar 

  28. Muthukrishnaraj A et al (2015) Development of reduced graphene oxide/CuBi2O4 hybrid for enhanced photocatalytic behavior under visible light irradiation. Ceram Int 41(5):6164–6168

    Article  CAS  Google Scholar 

  29. Chen XY, Ma C, Li XX, Chen P, Fang JG (2009) Hierarchical Bi2CuO4 microspheres: hydrothermal synthesis and catalytic performance in wet oxidation of methylene blue. Catal Commun 10(6):1020–1024

    Article  CAS  Google Scholar 

  30. Zhang Y, Li G, Zhao H, Tian F, Xiao S, Chen R (2013) Controllable synthesis of hierarchical Bi 2 CuO 4 microspheres in aqueous solution and their highly efficient visible-light-driven photocatalytic activities. CrystEngComm 15(40):8159–8165

    Article  CAS  Google Scholar 

  31. Lyskov NV, Metlin YG, Belousov VV, Tretyakov YD (2004) Microstructure evolution and conductivity of Bi2CuO4–Bi2O3 composites nearby the eutectic point. Solid State Ionics 173(1–4):135–139

    Article  CAS  Google Scholar 

  32. Hahn NT, Holmberg VC, Korgel BA, Mullins CB (2012) Electrochemical synthesis and characterization of p-CuBi2O4 thin film photocathodes. J Phys Chem C 116(10):6459–6466

    Article  CAS  Google Scholar 

  33. Chater E, Sellami M, Bettahar N (2011) Impact of palladium substitution for copper in Bi2CuO4 synthesized via sol-gel method. Eur Phys J-Appl Phys 53(1):11502

    Article  CAS  Google Scholar 

  34. Zhang YC, Yang H, Wang WP, Zhang HM, Li RS, Wang XX, Yu RC (2016) A promising supercapacitor electrode material of CuBi2O4 hierarchical microspheres synthesized via a coprecipitation route. J Alloys Compd 684:707–713

    Article  CAS  Google Scholar 

  35. Wang Y, Yan P, Dou X, Liu C, Zhang Y, Song Z, Qi F et al (2021) Degradation of benzophenone-4 by peroxymonosulfate activated with microwave synthesized well-distributed CuBi2O4 microspheres: theoretical calculation of degradation mechanism. Appl Catal B 290:120048

    Article  CAS  Google Scholar 

  36. Zhang H, Xue J, Han J, Ling Y (2020) Photo-assisted Fenton reactions and growth evolution of crack-urchined CuBi2O4 microspheres assembled by nanorods. Ceram Int 46(15):23742–23748

    Article  CAS  Google Scholar 

  37. Zhang Y, Xie Y, Li J, Yang G, Bai T, Wang J (2013) Effects of synthetic conditions on the morphology and catalytic properties of hierarchical CuBi2O4 nanoflowers grown by low-temperature solution process. J Alloys Compd 580:172–175

    Article  CAS  Google Scholar 

  38. Jagadeesh Ch, Suresh P, Sailaja BBV (2017) Photocatalytic properties of CuBi2O4 prepared by the co-precipitation method: degradation of rose Bengal and possible reaction mechanism under visible light irradiation. Int J Curr Adv Res 6:8605–8610

    Google Scholar 

  39. Boumaza S, Kabir H, Gharbi I, Belhadi A, Trari M (2018) Preparation and photocatalytic H2-production on α-Fe2O3 prepared by sol-gel. Int J Hydrog Energy 43(6):3424–3430

    Article  CAS  Google Scholar 

  40. Kusachiite HC (1995) CuBi2O4, a new mineral from Fuka, Okayama prefecture Japan. Miner Mag 59:545–548

    Article  Google Scholar 

  41. Wang L, Yang G, Wang D, Lu C, Guan W, Li Y, Crittenden J et al (2019) Fabrication of the flower-flake-like CuBi2O4/Bi2WO6 heterostructure as efficient visible-light driven photocatalysts: performance, kinetics and mechanism insight. Appl Surf Sci 495:143521

    Article  CAS  Google Scholar 

  42. Li Z, Zheng R, Dai S, Zhao T, Chen M, Zhang Q (2021) In-situ mechanochemical fabrication of pn Bi2MoO6/CuBi2O4 heterojunctions with efficient visible light photocatalytic performance. J Alloys Compd 882:160681

    Article  CAS  Google Scholar 

  43. Syed WAA, Ali A, Rafiq N, Shah WH, Shah NA, Yasir M (2019) BaCl2 an efficient replacement of CdCl2 treatment step for thermally deposited CdTe thin film. Mater Res Express 6:86438

    Article  CAS  Google Scholar 

  44. Belabed C, Tab A, Moulai F, Černohorský O, Boudiaf S, Benrekaa N, Trari M (2021) ZnO nanorods-PANI heterojunction dielectric, electrochemical properties, and photodegradation study of organic pollutant under solar light. Int J Hydrog Energy 46(40):20893–20904

    Article  CAS  Google Scholar 

  45. Haynes WM (ed) (2016–2017) Hanbook of Chemistry and Physics, 97th edn. CRC Press

  46. Bagtache R, Sebai I, Trari M (2020) Visible light induced H2 evolution on the hetero-junction Pt/CuCo2O4 prepared by hydrothermal route. Sol Energy 211:971–976

    Article  CAS  Google Scholar 

  47. Bagtache R, Zahra S, Abdi A, Trari M (2020) Characterization of CuCo2O4 prepared by nitrate route: application to Ni2+ reduction under visible light. J Photochem Photobiol, A 400:112728

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Amar Manseri for his technical assistance in the SEM analysis.

Funding

This study was funded by the Faculty of Chemistry Grant N° B00L01UN160420190020 (USTHB; Algiers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djaballah, A.M., Bagtache, R., Benlambarek, M. et al. Semiconducting properties of CuBi2O4 prepared at low temperature: application to oxygen evolution under visible light. Reac Kinet Mech Cat 135, 2769–2781 (2022). https://doi.org/10.1007/s11144-022-02260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02260-4

Keywords

Navigation